Câu hỏi:
17/12/2024 278Cho hình thang cân ABCD đáy nhỏ AB = 4cm, đáy lớn CD = 10cm, cạnh bên BC = 5cm thì đường cao AH bằng:
A. 4,5 cm.
B. 4 cm.
C. 3,5 cm.
D. 3 cm.
Trả lời:
Đáp án đúng là: B
Lời giải
Kẻ BK ⊥ DC tại K.
Vì ABCD là hình thang cân nên ta có ; AD = BC
=> ΔAHD = ΔBKC (ch – gn) => DH = CK
Suy ra DH = (CD – AB)
Suy ra DH = (CD – AB) = (10 – 4) = 3 cm
Do ABCD là hình thang cân nên AD = BC = 5 cm
Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có
Vậy AH = 4cm.
*Phương pháp giải:
Sủ dụng tam giac bằng nhau để tính DH
Áp dụng định lí pytago để tính AH
*Lý thuyết:
1. Định lí Pytago:
Trong tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
∆ABC vuông tại A: BC2 = AB2 + AC2
2. Định lí Pytago đảo:
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
∆ABC có BC2 = AB2 + AC2 thì ∆ABC vuông tại A
1. Hai tam giác bằng nhau:
Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.
Hai tam giác ABC và A'B'C' bằng nhau ta viết
nếu
2. Các trường hợp bằng nhau của hai tam giác thường:
a. Trường hợp bằng nhau thứ nhất của hai tam giác: cạnh - cạnh - cạnh (c.c.c)
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
Hai tam giác ABC và DEF có: thì (c.c.c)
b. Trường hợp bằng nhau thứ hai của hai tam giác: cạnh - góc - cạnh (c.g.c)
Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.
Hai tam giác ABC và MNP có:
thì (c.g.c)
*Hệ quả: Nếu hai cạnh góc vuông của hai tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thi hai tam giác vuông đó bằng nhau.
Xem thêm
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình thang vuông ABCD có , AB = AD = 2cm, DC = 4cm. Tính góc ABC của hình thang.
Câu 3:
Cho hình thang cân MNPQ (MN // PQ) có góc và hai đáy có độ dài 12cm, 40cm. Diện tích của hình thang cân là:
Câu 4:
Cho hình thang cân ABCD (AB // CD) có hai đường chéo cắt nhau tại I, hai đường thẳng AD và BC cắt nhau ở K. Chọn câu sai.
Câu 5:
Cho hình thang cân MNPQ (MN // PQ) có góc và hai đáy có độ dài 8cm, 30cm. Diện tích của hình thang cân là:
Câu 8:
Cho tam giác ABC cân tại A. Gọi D, E theo thứ tự thuộc các cạnh bên AB, AC sao cho AD = AE. Tứ giác BDEC là hình gì?
Chọn đáp án đúng nhất.
Câu 9:
Góc kề cạnh bên của hình thang có số đo là . Góc kề còn lại của cạnh bên đó là:
Câu 10:
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB, AC lần lượt tại D và E.
Chọn khẳng định đúng.
Câu 12:
Góc kề cạnh bên của hình thang có số đo là . Góc kề còn lại của cạnh bên đó là:
Câu 13:
Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy các điểm M, N sao cho BM = CN. Tứ giác BMNC là hình gì? Chọn đáp án đúng nhất.
Câu 14:
Cho hình thang ABCD có , DC = BC = 2.AB, DC = 4cm. Tính góc ABC của hình thang.
Câu 15:
Cho hình thang cân ABCD đáy nhỏ AB = 12cm, đáy lớn CD = 22cm, cạnh bên BC = 13cm thì đường cao AH bằng: