Câu hỏi:
22/07/2024 381Cho hình thang cân MNPQ (MN // PQ) có góc và hai đáy có độ dài 12cm, 40cm. Diện tích của hình thang cân là:
A. 728.
B. 346.
C. 364.
D. 362.
Trả lời:
Đáp án cần chọn là: C
Kẻ MH ⊥ QP; NK ⊥ QP tại H, K => MH // NK
Tứ giác MNKH có MN // HK nên MNKH là hình thang, lại có MH // NK
=> MN = HK; MH = NK
(Vì hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau và hai cạnh đáy bằng nhau)
Lại có
MQ = NP (vì MNPQ là hình thang cân) suy ra ΔMQH = ΔNPK (ch – cgv)
=> QH = KP =
Mà HK = MN = 12 cm nên QH = KP = = 14 cm
Mà = => ΔMHQ vuông cân tại H => MH = QH = 14 cm
Diện tích hình thang cân MNPQ là
SMNPQ = = 364
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình thang vuông ABCD có , AB = AD = 2cm, DC = 4cm. Tính góc ABC của hình thang.
Câu 3:
Cho hình thang cân ABCD (AB // CD) có hai đường chéo cắt nhau tại I, hai đường thẳng AD và BC cắt nhau ở K. Chọn câu sai.
Câu 4:
Cho hình thang cân MNPQ (MN // PQ) có góc và hai đáy có độ dài 8cm, 30cm. Diện tích của hình thang cân là:
Câu 6:
Cho hình thang cân ABCD đáy nhỏ AB = 4cm, đáy lớn CD = 10cm, cạnh bên BC = 5cm thì đường cao AH bằng:
Câu 8:
Cho tam giác ABC cân tại A. Gọi D, E theo thứ tự thuộc các cạnh bên AB, AC sao cho AD = AE. Tứ giác BDEC là hình gì?
Chọn đáp án đúng nhất.
Câu 9:
Góc kề cạnh bên của hình thang có số đo là . Góc kề còn lại của cạnh bên đó là:
Câu 10:
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB, AC lần lượt tại D và E.
Chọn khẳng định đúng.
Câu 12:
Góc kề cạnh bên của hình thang có số đo là . Góc kề còn lại của cạnh bên đó là:
Câu 13:
Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy các điểm M, N sao cho BM = CN. Tứ giác BMNC là hình gì? Chọn đáp án đúng nhất.
Câu 14:
Cho hình thang ABCD có , DC = BC = 2.AB, DC = 4cm. Tính góc ABC của hình thang.
Câu 15:
Cho hình thang cân ABCD đáy nhỏ AB = 12cm, đáy lớn CD = 22cm, cạnh bên BC = 13cm thì đường cao AH bằng: