Câu hỏi:
05/11/2024 3,925
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng
A. a
B.
C.
D.
Trả lời:
Đáp án đúng: D
*Lời giải:
Gọi O là giao điểm của AC và BD.
Ta có
*Phương pháp giải:
- áp dụng khoảng cách từ một điểm tới một mặt phẳng:
Để tính được khoảng từ điểm A đến mặt phẳng (α) thì điều quan trọng nhất là ta phải xác định được hình chiếu của điểm A trên (α)
Cho trước SA ⊥ Δ; trong đó S ∈ (α) và Δ ⊂ (α)
Bước 1: Dựng AK ⊥ Δ ⇒ Δ ⊥ (SAK) ⇒(α) ⊥ (SAK) và (α) ∩ (SAK) = SK
Bước 2: Dựng AP ⊥ SK ⇒ AP ⊥ (α) ⇒ d(A, (α)) = AP
*Lý thuyến cần nắm về khoảng cách một điểm tới một mặt phẳng:
Lý thuyết khoảng cách từ một điểm đến một mặt phẳng
- Khoảng cách từ điểm M đến mặt phẳng (P) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên mặt phẳng (P).
- Kí hiệu: d (M, (P)) = MH
Công thức tính khoảng cách từ một điểm đến mặt phẳng
Cho hệ tọa độ không gian Oxyz, cho điểm M có tọa độ như sau: (). Cho mặt phẳng (P) có phương trình dạng: ax + by + cz + d = 0.
Công thức tổng quát tính khoảng cách từ điểm M đến mặt phẳng (P) được tính như sau:
Cách tính khoảng cách từ một điểm đến một mặt phẳng
Để tính được khoảng từ điểm A đến mặt phẳng (α) thì điều quan trọng nhất là ta phải xác định được hình chiếu của điểm A trên (α)
Cho trước SA ⊥ Δ; trong đó S ∈ (α) và Δ ⊂ (α)
Bước 1: Dựng AK ⊥ Δ ⇒ Δ ⊥ (SAK) ⇒(α) ⊥ (SAK) và (α) ∩ (SAK) = SK
Bước 2: Dựng AP ⊥ SK ⇒ AP ⊥ (α) ⇒ d(A, (α)) = AP
1. Khoảng cách từ một điểm đến mặt phẳng.
Phương pháp giải:
Khoảng cách từ đến mặt phẳng (P): Ax + By + Cz + D = 0 là:
2. Khoảng cách giữa hai mặt phẳng song song.
Phương pháp giải:
Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm thuộc mặt phẳng này đến mặt phẳng kia. Cụ thể, để tính khoảng cách giữa hai mặt phẳng song song (P) và (Q) ta thực hiện các bước như sau:
+) Lấy điểm M thuộc mặt phẳng (P).
+) Tính khoảng cách từ điểm M đến mặt phẳng (Q) (áp dụng công thức khoảng cách từ một điểm đến mặt phẳng).
3. Khoảng cách từ một điểm đến một đường thẳng
Phương pháp giải:
Khoảng cách từ điểm M đến một đường thẳng d đi qua điểm A có vectơ chỉ phương được xác định bởi công thức:
4. Khoảng cách giữa hai đường thẳng song song
Phương pháp giải:
Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia. Cụ thể, để tính khoảng cách giữa hai đường thẳng song song d và d’ ta thực hiện như sau:
+) Lấy M thuộc đường thẳng d.
+) Tính khoảng cách từ M đến đường thẳng d’ (bằng công thức khoảng cách từ một điểm đến một đường thẳng).
Xem thêm các bài viết liên quan hay, chi tiết
Đáp án đúng: D
*Lời giải:
Gọi O là giao điểm của AC và BD.
Ta cóĐể tính được khoảng từ điểm A đến mặt phẳng (α) thì điều quan trọng nhất là ta phải xác định được hình chiếu của điểm A trên (α)
Cho trước SA ⊥ Δ; trong đó S ∈ (α) và Δ ⊂ (α)
Bước 1: Dựng AK ⊥ Δ ⇒ Δ ⊥ (SAK) ⇒(α) ⊥ (SAK) và (α) ∩ (SAK) = SK
Bước 2: Dựng AP ⊥ SK ⇒ AP ⊥ (α) ⇒ d(A, (α)) = AP
Lý thuyết khoảng cách từ một điểm đến một mặt phẳng
- Khoảng cách từ điểm M đến mặt phẳng (P) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên mặt phẳng (P).
- Kí hiệu: d (M, (P)) = MH
Công thức tính khoảng cách từ một điểm đến mặt phẳng
Cho hệ tọa độ không gian Oxyz, cho điểm M có tọa độ như sau: (). Cho mặt phẳng (P) có phương trình dạng: ax + by + cz + d = 0.
Công thức tổng quát tính khoảng cách từ điểm M đến mặt phẳng (P) được tính như sau:
Cách tính khoảng cách từ một điểm đến một mặt phẳng
Để tính được khoảng từ điểm A đến mặt phẳng (α) thì điều quan trọng nhất là ta phải xác định được hình chiếu của điểm A trên (α)
Cho trước SA ⊥ Δ; trong đó S ∈ (α) và Δ ⊂ (α)
Bước 1: Dựng AK ⊥ Δ ⇒ Δ ⊥ (SAK) ⇒(α) ⊥ (SAK) và (α) ∩ (SAK) = SK
Bước 2: Dựng AP ⊥ SK ⇒ AP ⊥ (α) ⇒ d(A, (α)) = AP
1. Khoảng cách từ một điểm đến mặt phẳng.
Phương pháp giải:
Khoảng cách từ đến mặt phẳng (P): Ax + By + Cz + D = 0 là:
2. Khoảng cách giữa hai mặt phẳng song song.
Phương pháp giải:
Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm thuộc mặt phẳng này đến mặt phẳng kia. Cụ thể, để tính khoảng cách giữa hai mặt phẳng song song (P) và (Q) ta thực hiện các bước như sau:
+) Lấy điểm M thuộc mặt phẳng (P).
+) Tính khoảng cách từ điểm M đến mặt phẳng (Q) (áp dụng công thức khoảng cách từ một điểm đến mặt phẳng).
3. Khoảng cách từ một điểm đến một đường thẳng
Phương pháp giải:
Khoảng cách từ điểm M đến một đường thẳng d đi qua điểm A có vectơ chỉ phương được xác định bởi công thức:
4. Khoảng cách giữa hai đường thẳng song song
Phương pháp giải:
Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia. Cụ thể, để tính khoảng cách giữa hai đường thẳng song song d và d’ ta thực hiện như sau:
+) Lấy M thuộc đường thẳng d.
+) Tính khoảng cách từ M đến đường thẳng d’ (bằng công thức khoảng cách từ một điểm đến một đường thẳng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, gọi (S) là mặt cầu đi qua hai điểm A(-1;-2;4), B(2;1;2) và có tâm thuộc trục Oz. Bán kính của mặt cầu (S) là
Câu 2:
Cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật với AB = 2a, BC = a. Biết và Thể tích khối hộp ABCD.A'B'C'D' bằng
Câu 3:
Cho khối chóp tứ giác có đáy là hình vuông và có thể tích V. Nếu tăng độ dài chiều cao của khối chóp đã cho lên gấp ba và giữ nguyên cạnh đáy của nó thì ta được khối chóp mới có thể tích bằng
Câu 5:
Cho hàm số (m là tham số thực), thỏa mãn Mệnh đề nào dưới đây đúng?
Câu 6:
Trong hệ trục tọa độ Oxyz cho 3 điểm A(5;-2;0), B(4;5;-2) và C(0;3;2). Điểm M di chuyển trên trục Ox. Đặt . Biết giá trị nhỏ nhất của Q có dạng trong đó và b là số nguyên tố. Tính a + b.
Câu 7:
Hình chóp S.ABCD có diện tích đáy ABCD bằng a2 và độ dài đường cao bằng 6a. Thể tích khối chóp S.ABCD bằng
Câu 8:
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;100] để bất phương trình nghiệm đúng với ?
Câu 9:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi là mặt phẳng đi qua CD’ và tạo với mặt phẳng (A'B'C'D') một góc với . Mặt phẳng chia khối lặp phương thành hai khối đa diện có thể tích là với . Tính V1.
Câu 11:
Cho khối trụ có chiều cao h bằng bán kính đáy và thể tích . Tính chiều cao h của khối trụ đó.
Câu 12:
Cho hai khối cầu có tổng diện tích bằng tiếp xúc ngoài nhau và cùng tiếp xúc với mặt phẳng (P) lần lượt tại hai điểm A, B. Tính tổng thể tích của hai khối cầu đó biết .
Câu 13:
Cho hai hình vuông ABCD, ABEF nằm trong hai mặt phẳng vuông góc với nhau. M là tâm của hình vuông ABEF. Cosin góc giữa hai mặt phẳng (MCD), (EFCD) bằng
Câu 14:
Trong mặt phẳng (P) cho tam giác ABC có AB = 1, AC = 2, . Điểm S thay đổi thuộc đường thẳng đi qua A và vuông góc với (P), (S khác A). Gọi B1, C1 lần lượt là hình chiếu vuông góc của A trên SB, SC. Đường kính MN thay đổi của mặt cầu (T) ngoại tiếp khối đa diện ABCB1C1 và I là điểm cách tâm mặt cầu (T) một khoảng bằng ba lần bán kính. Tính giá trị nhỏ nhất của IM + IN.