Câu hỏi:
23/07/2024 254Cho hình lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng . Lấy M, N lần lượt trên cạnh sao cho . Tính thể tích V của khối .
A.
B.
C.
D.
Trả lời:
Đáp án B
Gọi G, K lần lượt là tâm các hình chữ nhật và .
Ta có: (do G là trung điểm ).
Xét tam giác có AG là trung tuyến và .
Suy ra M là trọng tâm tam giác .
Do đó BM đi qua trung điểm I của .
Ta có: (do K là trung điểm ).
Xét tam giác có là trung tuyến và , suy ra N là trọng tâm của tam giác .
Do đó đi qua trung điểm I của .
Từ M là trọng tâm tam giác và N trọng tâm của tam giác , suy ra: .
Gọi lần lượt là thể tích các khối chóp IMNC; .
Ta có: .
Mà .
Hạ AH vuông góc với BC tại H thuộc BC.
Ta được AH vuông góc với mặt phẳng , song song với mặt phẳng nên khoảng cách từ I đến mặt phẳng bằng khoảng cách từ A đến và bằng AH.
Ta có: .
Suy ra: .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có bảng xét dấu của đạo hàm như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh , . Hai mặt bên và cùng vuông góc với mặt phẳng đáy , cạnh . Tính theo a thể tích V của khối chóp S.ABCD.
Câu 3:
Cho hàm số . Hàm số có đồ thị như sau:
Bất phương trình nghiệm đúng với mọi khi và chỉ khi
Câu 6:
Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng và .
Câu 7:
Tích tất cả các số thực m để hàm số có giá trị nhỏ nhất trên đoạn bằng 18 là
Câu 8:
Cho hàm số có đồ thị như hình bên dưới.
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm?
Câu 9:
Gọi S là diện tích hình phẳng giới hạn bởi các đường , trục hoành và 2 đường thẳng trong hình vẽ bên.
Đặt: . Mệnh đề nào sau đây đúng
Câu 11:
Cho mặt cầu có diện tích đường tròn lớn là 2π. Khi đó, mặt cầu có bán kính là:
Câu 13:
Cho hàm số có đạo hàm xác định trên và thỏa mãn và . Số nghiệm nguyên dương của bất phương trình là
Câu 15:
Cho x, y là các số dương thỏa mãn . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của . Tính .