Câu hỏi:
23/07/2024 4,003
Cho hàm số f(x) xác định trên [a;b]. Trong các khẳng định sau, khẳng định nào đúng?
A. Nếu hàm số f(x) liên tục trên đoạn [a;b] và f(a).f(b)>0 thì phương trình f(x)=0 không có nghiệm trong khoảng (a;b)
B. Nếu f(a).f(b)<0 thì phương trình f(x)=0 có ít nhất một nghiệm trong khoảng (a;b)
C. Nếu phương trình f(x)=0có nghiệm trong khoảng (a;b) thì hàm số y=f(x) liên tục trên khoảng (a;b)
D. Nếu hàm số y=f(x) liên tục tăng trên đoạn [a;b] và f(a).f(b)>0 thì phương trình f(x)=0 không thể có nghiệm trong (a;b)
Trả lời:

Đáp án: D
Giải thích:
Đáp án:
Đáp án A sai. Chẳng hạn xét hàm số f(x)=x2−5. Hàm số này xác định trên [−3;3] và liên tục trên đoạn đó, đồng thời f(−3).f(3)=16>0 nhưng phương trình f(x)=x2−5=0 có nghiệm x=±√5∈(−3;3)
Đáp án B sai vì thiếu điều kiện f(x) liên tục trên (a;b)
Đáp án C sai. Ví dụ xét hàm số f(x)={x+1,x<0x+2,x≥0. Hàm số này xác định trên [−3;3], có nghiệm thuộc khoảng (−3;3) nhưng gián đoạn tại điểm x=0∈(−3;3) nên không liên tục trên khoảng (−3;3).
Đáp án D đúng. Thật vậy:
+ Vì hàm số y=f(x) liên tục tăng trên đoạn [a;b] nên f(a)<f(x)<f(b)∀x∈(a;b)
TH1:
{f(a>0f(b)>0f(a)<f(x)<f(b)
⇒f(x)>0
TH2:
{f(a)<0f(b)<0f(x)<f(b)
⇒f(x)<0
Vậy không có giá trị nào của x để f(x)=0 hay phương trình f(x)=0 không thể có nghiệm trong (a;b)
Đáp án: D
Giải thích:
Đáp án:
Đáp án A sai. Chẳng hạn xét hàm số f(x)=x2−5. Hàm số này xác định trên [−3;3] và liên tục trên đoạn đó, đồng thời f(−3).f(3)=16>0 nhưng phương trình f(x)=x2−5=0 có nghiệm x=±√5∈(−3;3)
Đáp án B sai vì thiếu điều kiện f(x) liên tục trên (a;b)
Đáp án C sai. Ví dụ xét hàm số f(x)={x+1,x<0x+2,x≥0. Hàm số này xác định trên [−3;3], có nghiệm thuộc khoảng (−3;3) nhưng gián đoạn tại điểm x=0∈(−3;3) nên không liên tục trên khoảng (−3;3).
Đáp án D đúng. Thật vậy:
+ Vì hàm số y=f(x) liên tục tăng trên đoạn [a;b] nên f(a)<f(x)<f(b)∀x∈(a;b)
TH1:
{f(a>0f(b)>0f(a)<f(x)<f(b)
⇒f(x)>0
TH2:
{f(a)<0f(b)<0f(x)<f(b)
⇒f(x)<0
Vậy không có giá trị nào của x để f(x)=0 hay phương trình f(x)=0 không thể có nghiệm trong (a;b)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số điểm gián đoạn của hàm số h(x)={2x,x<0x2+1,0≤x≤23x−1,x>2 là:
Câu 2:
Biết rằng f(x)={x2−1√x−1,x≠1a,x=1 liên tục trên đoạn (0;1) (với a là tham số). Khẳng định nào dưới đây về giá trị a là đúng?
Câu 3:
Tìm khẳng định đúng trong các khẳng định sau:
( I ) f(x) liên tục trên đoạn [ (a;b) ] và f(a).f(b)>0 thì tồn tại ít nhất một số c∈(a;b) sao cho
(II) )Nếu f(x) liên tục trên đoạn (a;b] và trên [b;c) thì không liên tục (a;c)
Câu 5:
Cho hàm số f(x)=x3−1000x2+0,01. Phương trình f(x)=0. có nghiệm thuộc khoảng nào trong các khoảng:
I. (−1;0)
II. (0;1)
III. (1;2)
IV. (2;1000)
Cho hàm số f(x)=x3−1000x2+0,01. Phương trình f(x)=0. có nghiệm thuộc khoảng nào trong các khoảng:
I. (−1;0)
II. (0;1)
III. (1;2)
IV. (2;1000)
Câu 6:
Cho hàm số f(x)={3−x√x+1−2,x≠3m,x=3 . Hàm số đã cho liên tục tại x=3 khi bằng :
Câu 7:
Tìm giá trị nhỏ nhất của a để hàm số f(x)={x2−5x+6√4x−3−x,x>31−a2x,x≤3 liên tục tại x=3.