Câu hỏi:
09/11/2024 187Cho đa giác đều có 2018 đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho?
A.
B.
C.
D.
Trả lời:
Đáp án đúng là C.
Lời giải:
Ta vẽ đường tròn ngoại tiếp đa giác đều 2018 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 1009 đỉnh.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật.
Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là
*Phương pháp giải:
Nhận xét rằng: Đa giác đều có số đỉnh chẵn luôn tồn tại đường kính của đường tròn ngoại tiếp đa giác là đoạn nối hai đỉnh của đa giác.
Nên ta chia đường tròn ngoại tiếp đa giác đều đó thành hai nửa đường tròn và dựa vào tính đối xứng của các đỉnh để tạo thành một hình chữ nhật
*Lý thuyết:
Cho tập hợp A có n phần tử và cho số nguyên k, (). Mỗi tập hợp con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.
- Số các tổ hợp chập k của một tập hợp có n phần tử là: .
- Tính chất:
- Đặc điểm: Tổ hợp là chọn phần tử không quan trọng thứ tự, số phần tử được chọn là k:
2. Các công thức
Công thức tổ hợp:
Công thức tính chất của tổ hợp:
Xem thêm
Công thức tổ hợp đầy đủ, chi tiết nhất - Toán lớp 11
TOP 40 câu Trắc nghiệm Hoán Vị - Chỉnh Hợp – Tổ Hợp (có đáp án ) – Toán 11
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi (S) là mặt cầu đi qua 4 điểm A(2;0;0),B(1;3;0),C(-1;0;3),D(1;2;3) . Tính bán kính R của (S).
Câu 4:
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA = 2a . Tính theo a thể tích khối chóp S.ABCD.
Câu 5:
Đường cong trong hình bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Câu 6:
Cho ba điểm A(2;1;-1); B (-1;0;4); C (0; -2;-1) . Phương trình mặt phẳng đi qua A và vuông góc với BC là
Câu 7:
Gọi S là tập hợp tất cả các giá trị của tham số và phương trình có nghiệm duy nhất. Tìm số phân tử của S .
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a; AD = 2a. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác S.ABC.
Câu 10:
Một ô tô đang chạy với vận tốc 10m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chạm dần đều với vận tốc , trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Câu 11:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, và SA vuông góc với đáy ABCD. Tính sin với là góc tạo bởi đường thẳng BD và mặt phẳng (SBC) .
Câu 12:
Cho hình chóp đều S.ABCD có cạnh đáy bằng a , góc giữa cạnh bên và mặt đáy bằng . Tính thể tích của khối chóp S.ABCD theo a .
Câu 13:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a khoảng cách từ điểm A đến mặt phẳng (SBC) là , khoảng cách giữa SA, BC là . Biết hình chiếu của S lên mặt phẳng (ABC) nằm trong tam giác ABC tính thể tích khối chóp S.ABC
Câu 14:
Một hình trụ có bán kính đáy bằng chiều cao và bằng a. Một hình vuông ABCD có AB;CD là 2 dây cung của 2 đường tròn đáy và mặt phẳng (ABCD) không vuông góc với đáy. Diện tích hình vuông đó bằng .