Câu hỏi:

12/01/2025 15

Cho đa giác đều 20 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật.

A. 6323

B. 3323

Đáp án chính xác

C. 234845

D. 374845

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: B

* Lời giải:

* Phương pháp giải:

Tìm số phần tử không gian mẫu

- Tìm số phần tử thuận lợi của biến cố A đã cho

- Tính xác suất 

* Lý thuyết nắm thêm

1. Quy tắc cộng

- Quy tắc cộng: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.

- Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau, được phát biểu như sau:

Nếu A và B là các tập hợp hữu hạn và không giao nhau thì:

n  (AB)  =n(A)  +n(B)

- Chú ý: Quy tắc cộng có thể mở rộng cho nhiều hành động.

2. Quy tắc nhân

- Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.

- Chú ý: Quy tắc nhân có thể mở rộng cho nhiều hành động liên liếp.

3. Hoán vị

3.1 Định nghĩa

- Định nghĩa: Cho tập hợp A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó.

- Nhận xét: Hai hoán vị của n phần tử khác nhau ở thứ tự sắp xếp.

Chẳng hạn, hai hoán vị abc và cab của ba phần tử a; b; c là khác nhau.

3.2 Số các hoán vị

Kí hiệu: Pn là số các hoán vị của n phần tử.

- Định lí: Pn = n.(n – 1).(n – 2)….2.1

- Chú ý: Kí hiệu n.(n – 1)…2.1 là n! (đọc là n là giai thừa), ta có: Pn = n!.

4. Chỉnh hợp

4.1 Định nghĩa.

- Cho tập hợp A gồm n phần tử (n ≥ 1).

Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.

4.2 Số các chỉnh hợp

- Kí hiệu Ank là số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n) .

- Định lí:

Ank  =  n(n1)...(nk+ ​1)

5. Tổ hợp

5.1 Định nghĩa.

- Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.

Chú ý: Số k trong định nghĩa cần thỏa mãn điều kiện 1 ≤ k ≤ n. Tuy vậy, tập hợp không có phần tử nào là tập rỗng nên ta quy ước gọi tổ hợp chập 0 của n phần tử là tập rỗng.

- Ví dụ 4. Cho tập A = {3; 4; 5; 6}.

Ta liệt kê các tổ hợp chập 3 của A là: {3; 4; 5}; {3; 4; 6}; {3; 5; 6}; {4; 5; 6}.

5.2 Số các tổ hợp.

Kí hiệu Cnk là số các tổ hợp chập k của n phần tử ( 0 ≤ k ≤ n).

- Định lí: Cnk  =  n!k!(nk)!.

5.3 Tính chất của các số Cnk

a) Tính chất 1.

Cnk  =   Cnnk;  0  k    n

Ví dụ 7. C84+C85=C95=126.

6. Công thức nhị thức Niu- tơn

Ta có:

Lý thuyết Nhị thức Niu-tơn chi tiết – Toán lớp 11 (ảnh 1)

- Công thức nhị thức Niu – tơn.

(a​  +  b)n  =  Cn0an  +​  Cn1.an1b+​ ...+​  Cnk.ankbk ​+....+Cnn1abn1+​  Cnnbn

- Hệ quả:

Với a = b = 1 ta có: 2n  =Cn0+​ Cn1+...+​ Cnn

Với a = 1; b = – 1 ta có: 0  =Cn0​ Cn1+...+(1)k.Cnk+...+(1)n​ Cnn

- Chú ý:

Trong biểu thức ở vế phải của công thức (1):

a) Số các hạng tử là n + 1.

b) Các hạng tử có số mũ của a giảm dần từ n đến 0; số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước a0=b0=1).

c) Các hệ số của mỗi cặp hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

Xem thêm các bài viết liên quan hay, chi tiết:

Chuyên đề Ôn tập chương 2: Tổ hợp - xác suất - Toán 11 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình chiếu đứng của hình hộp chữ nhật có hình dạng

Xem đáp án » 18/12/2024 122

Câu 2:

Một đội y tế gồm có 220 nữ và 280 nam dự định chia thành các nhóm sao cho số nữ và số nam ở mỗi nhóm đều nhau, biết số nhóm chia được nhiều hơn 1 nhóm và không lớn hơn 5 nhóm. Hỏi có thể chia thành mấy nhóm? Khi đó mỗi nhóm có bao nhiêu nam bao nhiêu nữ.

Xem đáp án » 13/12/2024 107

Câu 3:

Một phép chia có số chia là 5, số dư là 1. Để phép chia là phép chia hết thì cần thêm vào số bị chia bao nhiêu đơn vị?

Xem đáp án » 18/12/2024 100

Câu 4:

Tìm y

y : 3,1 = 1,47 (dư 0,013)

Xem đáp án » 18/12/2024 78

Câu 5:

Tỉ số phần trăm của hai số 135 và 400 là:

Xem đáp án » 18/12/2024 56

Câu 6:

Tìm x

a) x x 0,8 = 1,2 x 4,5     b) 45,54 : x = 18 : 5

Xem đáp án » 18/12/2024 44

Câu 7:

Gọi M; N lần lượt là trung điểm của các cạnh AB; AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?

Xem đáp án » 18/12/2024 36

Câu 8:

Tìm số tự nhiên x bé nhất trong các số 2; 3; 4; 5 sao cho 2,6 × x > 7

Xem đáp án » 18/12/2024 35

Câu 9:

Xét các số nguyên dương chia hết cho 3. Tổng số 50 số nguyên dương đầu tiên của dãy số đó bằng

Xem đáp án » 18/12/2024 34

Câu 10:

Nêu đặc điểm của phân số lớn hơn 1, bé hơn 1, bằng 1.

Xem đáp án » 18/12/2024 33

Câu 11:

Tính 45+14×25 

Xem đáp án » 18/12/2024 31

Câu 12:

Hình lăng trụ lục giác đều có bao nhiêu mặt phẳng đối xứng?

Xem đáp án » 18/12/2024 29

Câu 13:

Mệnh đề nào sau đây sai?

Xem đáp án » 18/12/2024 28

Câu 14:

Điểm cực đại của đồ thị hàm số y = x3 + 3x2 + 2 là

Xem đáp án » 18/12/2024 28

Câu 15:

Hình chóp ngũ giác có số mặt và số cạnh là:

Xem đáp án » 18/12/2024 27