Câu hỏi:

27/10/2024 385

Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

A. Ba điểm phân biệt  

B. Một điểm và một đường thẳng

C. Hai đường thẳng cắt nhau  

Đáp án chính xác

D. Bốn điểm phân biệt

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: C.

* Lời giải:

+ A sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.

+ B sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ta chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

+ D sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm mặt phẳng không đồng phẳng thì sẽ tạo không tạo được mặt phẳng nào đi qua cả 4 điểm.

* Phương pháp giải:

- nắm lại lý thuyết về mặt phẳng và các tính chất của mặt phẳng:

Tính chất 2. Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.

* Lý thuyết cần nắm thêm về đường thẳng và mặt phẳng: 

Mặt phẳng

- Để biểu diễn mặt phẳng ta thường dùng hình bình hành hay một miền góc và ghi tên của mặt phẳng vào một góc của hình biểu diễn.

Lý thuyết Đại cương về đường thẳng và mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

- Để kí hiệu mặt phẳng, ta thường dùng các chữ cái in hoa hoặc chữ cái Hi Lạp đặt trong dấu ngoặc ( ). Ví dụ: mp(P), mp(Q), mp(α), mp(β)…

2. Điểm thuộc mặt phẳng.

Cho điểm A và mặt phẳng (α).

- Khi điểm A thuộc mặt phẳng (α) ta nói A nằm trên (α) hay (α) chứa A, hay (α) đi qua A và kí hiệu là A(α).

- Khi điểm A không thuộc mặt phẳng (α) ta nói điểm A nằm ngoài (α) hay (α)  không chứa A và kí hiệu là A(α).

Lý thuyết Đại cương về đường thẳng và mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

Hình trên cho ta hình biểu diễn của điểm A thuộc mặt phẳng , còn điểm B không thuộc (α).

Các tính chất thừa nhận

- Tính chất 1. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt

- Tính chất 2. Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.

Một mặt phẳng hoàn toàn xác định nếu biết nó đi qua ba điểm không thẳng hàng. Ta kí hiệu mặt phẳng đi qua ba điểm không thẳng hàng A, B, C là mặt phẳng (ABC) hoặc mp(ABC) hoặc (ABC).

- Tính chất 3. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.

Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (α) thì ta nói đường thẳng d nằm trong (α) hay (α) chứa d và kí hiệu là d(α) hay (α)d.

- Tính chất 4. Tồn tại bốn điểm không cùng thuộc một mặt phẳng.

Nếu có nhiều điểm cùng thuộc một mặt phẳng thì ta nói những điểm đó đồng phẳng, còn nếu không có mặt phẳng nào chứa các điểm đó thì ta nói chúng không đồng phẳng.

- Tính chất 5. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa.

Từ đó suy ra: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy.

Đường thẳng chung d của hai mặt phẳng phân biệt (α) và (β) được gọi là giao tuyến của (α) và (β) và kí hiệu là d  =  (α)(β).

- Tính chất 6. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng.

Cách xác định mặt phẳng

1) Mặt phẳng được hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.

Lý thuyết Đại cương về đường thẳng và mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

2) Mặt phẳng được hoàn toàn xác định khi biết nó đi qua một điểm và chứa một đường thẳng không đi qua điểm đó.

Cho đường thẳng d và điểm A không thuộc d. Khi đó điểm A và đường thẳng d xác định một mặt phẳng, kí hiệu là mp(A, d) hay (A, d) hoặc mp(d, A) hay (d, A).

Lý thuyết Đại cương về đường thẳng và mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

3) Mặt phẳng được hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau.

Cho hai đường thẳng cắt nhau a và b. Khi đó hai đường thẳng a và b xác định một mặt phẳng và kí hiệu là mp(a, b) hay (a, b) hoặc mp(b, a) hay (b, a).

Lý thuyết Đại cương về đường thẳng và mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Đại cương về đường thẳng và mặt phẳng (mới + Bài Tập) - Toán 11

Toán 11 Bài 1 giải SGK : Đại cương về đường thẳng và mặt phẳng

50 Bài tập Đại cương về đường thẳng và mặt phẳng Toán 11 mới nhất 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện ABCD. Gọi E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng ACD là

Xem đáp án » 23/07/2024 8,696

Câu 2:

Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng ACD và GAB là:

Xem đáp án » 20/07/2024 2,800

Câu 3:

Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M, N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. Mặt phẳng MNP cắt tứ diện theo một thiết diện có diện tích là:

Xem đáp án » 22/07/2024 1,995

Câu 4:

Cho điểm A không nằm trên mặt phẳng α chứa tam giác BCD. Lấy E, F là các điểm lần lượt nằm trên các cạnh AB, AC. Khi EF và BC cắt nhau tại I, thì I không phải là điểm chung của hai mặt phẳng nào sau đây?

Xem đáp án » 23/07/2024 1,973

Câu 5:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Mặt phẳng α qua MN cắt AD, BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

Xem đáp án » 23/07/2024 1,938

Câu 6:

Thiết diện của 1 tứ diện có thể là:

Xem đáp án » 22/07/2024 1,682

Câu 7:

Cho bốn điểm N không cùng ở trong một mặt phẳng. Gọi P lần lượt là trung điểm của D. Trên MND lấy điểm MND sao cho MN=AB2=a không song song với DM=DN=AD32=a3 (không trùng với các đầu mút). Gọi E là giao điểm của đường thẳng D với mặt phẳng H. Mệnh đề nào sau đây đúng?

Xem đáp án » 22/07/2024 1,443

Câu 8:

Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm các cạnh AB, BC. Trên đường thẳng CD lấy điểm M nằm ngoài đoạn CD. Thiết diện của tứ diện với  mặt phẳng HKM là:

Xem đáp án » 23/07/2024 1,393

Câu 9:

Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng ABCD. Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng ABM là

Xem đáp án » 22/07/2024 855

Câu 10:

Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng ACD tại J. Khẳng định nào sau đây sai?

Xem đáp án » 18/07/2024 674

Câu 11:

Cho tứ diện SABC. Gọi L, M, N lần lượt là các điểm trên các cạnh SA, SB và AC sao cho LM không song song với AB, LN không song song với SC. Mặt phẳng LMN cắt các cạnh AB, BC, SC lần lượt tại K, I, J. Ba điểm nào sau đây thẳng hàng?

Xem đáp án » 23/07/2024 608

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC. Gọi I là giao điểm của AM với mặt phẳng SBD. Mệnh đề nào dưới đây đúng?

Xem đáp án » 19/07/2024 584

Câu 13:

Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng GCD cắt tứ diện theo một thiết diện có diện tích là:

Xem đáp án » 23/07/2024 548

Câu 14:

Cho 3 đường thẳng d1,d2,d3 không cùng thuộc một mặt phẳng và cắt nhau từng đôi. Khẳng định nào sau đây đúng?

Xem đáp án » 21/07/2024 491

Câu 15:

Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi N là giao điểm của đường thẳng SD với mặt phẳng AMB. Mệnh đề nào sau đây đúng?

Xem đáp án » 22/07/2024 463

Câu hỏi mới nhất

Xem thêm »
Xem thêm »