Câu hỏi:
12/12/2024 187Bảng biến thiên sau đây là của hàm số nào?
A.
B.
C.
D.
Trả lời:
Đáp án đúng là B
Lời giải
- Quan sát bảng biến thiên.
- Khảo sát các hàm số của từng đáp án A, B, C, D.
- Quan sát bảng biến thiên ta thấy:
+) nên đồ thị hàm số có tiệm cận đứng x=-1
+) nên đồ thị hàm số có tiệm cận ngang y=2
+ Hàm số đồng biến trên các khoảng và và
Đáp án A: Đồ thị hàm số có tiệm cận đứng loại.
Đáp án B: Đồ thị hàm số có tiệm cận ngang y=2 và tiệm cận đứng x=-1
Lại có nên hàm số đồng biến trên các khoảng và thỏa mãn.
Đáp án C: nên hàm số nghịch biến trên các khoảng và loại.
Đáp án D: Đồ thị hàm số có tiệm cận đứng loại.
*Phương pháp giải:
- Quan sát bảng biến thiên.
- Khảo sát các hàm số của từng đáp án A, B, C, D.
*Lý thuyết:
3.1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = (c ≠ 0, ad – bc ≠ 0)
Sử dụng sơ đồ khảo sát hàm số, ta có thể khảo sát sự biến thiên và vẽ đồ thị của hàm số y = (c ≠ 0, ad – bc ≠ 0).
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Xét sự biến thiên của hàm số
- Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận (nếu có).
- Tính đạo hàm y' và tìm các điểm mà tại đó đạo hàm bằng 0.
- Lập bảng biến thiên; xác định chiều biến thiên, cực trị của hàm số (nếu có).
Bước 3. Vẽ đồ thị hàm số
- Vẽ các đường tiệm cận (nếu có).
- Xác định các điểm đặc biệt của đồ thị: cực trị, giao điểm của đồ thị với các trục tọa độ (trong trường hợp đơn giản), …
- Nhận xét về đặc điểm của đồ thị: chỉ ra tâm đối xứng, trục đối xứng (nếu có).
Chú ý: Đồ thị hàm số y = f(x) giao với trục hoành tại những điểm có hoành độ là nghiệm của phương trình f(x) = 0, giao với trục tung tại điểm có tung độ là f(0) nếu 0 thuộc tập xác định của hàm số đó.
Xem thêm
Lý thuyết Khảo sát sự biến thiên và vẽ đồ thị của hàm số – Toán lớp 12 Cánh diều
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày cho bởi công thức Hỏi trong một ngày có bao nhiêu lần mực nước trong kênh đạt độ sâu 13m.
Câu 3:
Cho đồ thị hàm số điểm M có hoành độ thuộc (C). Biết tiếp tuyến của (C) tại M lần lượt cắt Ox, Oy tại A, B. Tính diện tích tam giác OAB.
Câu 5:
Cho đồ thị hàm số và đường thẳng Có bao nhiêu tiếp tuyến của (C) vuông góc với đường thẳng d?
Câu 8:
Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số có tiệm cận ngang?
Câu 12:
Cho Trong các công thức về số các chỉnh hợp và số các tổ hợp sau, công thức nào là công thức đúng?
Câu 14:
Cho khối đa diện có mỗi đỉnh là đỉnh chung của đúng ba cạnh. Khi đó số đỉnh của khối đa diện là :
Câu 15:
Cho đồ thị hàm số Trong các đường thẳng sau dây, đường thẳng nào cắt (C) tại hai điểm phân biệt?