Giải bài tập trang 57, 58 Chuyên đề Toán 10 Bài 3 - Chân trời sáng tạo
Với Giải bài tập trang 57, 58 Chuyên đề Toán 10 trong Bài 3: Parabol sách Chuyên đề Toán lớp 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 57, 58.
Giải bài tập trang 57, 58 Chuyên đề Toán 10 Bài 3 - Chân trời sáng tạo
Khám phá 1 trang 57 Chuyên đề Toán 10: Chứng tỏ rằng nếu điểm M(x0; y0) nằm trên parabol (P) thì điểm M'(x0; –y0) cũng nằm trên parabol (P).
Lời giải:
M(x0; y0) thuộc (P) thì
Có nên M'(x0; –y0) cũng thuộc (P).
Thực hành 1 trang 58 Chuyên đề Toán 10: Tìm toạ độ tiêu điểm, toạ độ đỉnh, phương trình đường chuẩn và trục đối xứng của các parabol sau:
a) (P1): y2 = 2x;
b) (P2): y2 = x;
c) .
Lời giải:
a) Có 2p = 2, suy ra p = 1.
Toạ độ tiêu điểm của parabol là F
Toạ độ đỉnh của parabol là O(0; 0).
Phương trình đường chuẩn của parabol là x =
Trục đối xứng của parabol là trục Ox.
b) Có 2p = 1, suy ra p =
Toạ độ tiêu điểm của parabol là F
Toạ độ đỉnh của parabol là O(0; 0).
Phương trình đường chuẩn của parabol là x =
Trục đối xứng của parabol là trục Ox.
c) Có 2p = suy ra p =
Toạ độ tiêu điểm của parabol là F
Toạ độ đỉnh của parabol là O(0; 0).
Phương trình đường chuẩn của parabol là x =
Trục đối xứng của parabol là trục Ox.
Vận dụng 1 trang 58 Chuyên đề Toán 10: Trong mặt phẳng Oxy, cho điểm A(2; 0) và đường thẳng d: x + 2 = 0. Viết phương trình của đường (L) là tập hợp các tâm J(x; y) của các đường tròn (C) thay đổi nhưng luôn luôn đi qua A và tiếp xúc với d.
Lời giải:
Có JA =
Khoảng cách từ J đến d là: d(J; d) = |x + 2|.
Đường tròn (C) luôn đi qua A và tiếp xúc với d JA = d(J; d)
Vậy (L) là một parabol có phương trình y2 = 8x.
Khám phá 2 trang 58 Chuyên đề Toán 10: Cho điểm M(x; y) trên parabol (P): y2 = 2px (Hình 2). Tính khoảng cách từ điểm M đến tiêu điểm F của (P).
Lời giải:
Vì M thuộc (P) nên y2 = 2px.
Khoảng cách từ điểm M đến tiêu điểm F là: MF =
(vì x + > 0).
Thực hành 2 trang 58 Chuyên đề Toán 10: Tính bán kính qua tiêu của điểm dưới đây trên parabol tương ứng:
a) Điểm M1(1; –4) trên (P1): y2 = 16x;
b) Điểm M2(3; –3) trên (P2): y2 = 3x;
c) Điểm M3(4; 1) trên : .
Lời giải:
a) Có 2p = 16, suy ra p = 8.
Bán kính qua tiêu của M1 là:
b) Có 2p = 3, suy ra p =
Bán kính qua tiêu của M2 là:
c) Có 2p = suy ra p =
Bán kính qua tiêu của M3 là:
Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo