Câu hỏi:

17/07/2024 135

Xét tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi V1, V2, V3 lần lượt là thể tích của các khối tròn xoay sinh ra khi quay tam giác OCA quanh trung trực của đoạn thẳng CA, quay tam giác OAB quanh trung trực của đoạn thẳng AB, quay tam giac OBC quanh trung trực của đoạn thẳng BC. Khi biểu thức V1+V2 đạt giá trị lớn nhất, tính V3 theo R.

A. V3=23π9R3

B. V3=32π81R3

C. V3=57π81R3

D. V3=8π81R3

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Chọn D

Xét tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi V1, V2, V3 (ảnh 1)

V1=13OP.S1=13OPπAC22=π3OP.PA2=π3OPOA2OP2=π3OPR2OP2

V2=13OQ.S2=13OQπAB22=π3OQ.QA2

=π3OQOA2OQ2=π3OQR2OQ2.

Xét hàm fx=xR2x2. Với 0x<R.

Khi đó f'x=R23x2.f'x=0x=R3x=R3.

Lập bảng biến thiên, thấy rằng maxx0;Rgx=fR3.

Khi đó, áp dụng cho V1,V2: V1+V2=π3OPR2OP2+OQR2OQ2 đạt giá trị lớn nhất khi OP=OQ=R3.

Hay khi đó tam giác ABC cân tại A (do OP = OQ).

Mà lúc đó AB=2R2OQ2=2R2R23=2R63.

Xét tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi V1, V2, V3 (ảnh 2)

Do tam giác ABC cân A nên khi đó AMBC.

Ta có

SABC=12AM.BC=AB.AC.BC4RAM=AB.AC2R=4R2.692R=4R3

Mà AM=AO+OMOM=4R3R=R3

Vậy V3=13OM.S3=13OM.π.MC2=π3OMR2OM2=π3.R3R2R29=8πR381

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giá trị nhỏ nhất của hàm số y=x24x+54x2 trên khoảng (2;+∞).

Xem đáp án » 23/07/2024 1,724

Câu 2:

Cho khối lăng trụ ABC.A’B’C’. Đường thẳng đi qua trọng tâm của tam giác ABC và song song với BC cắt các cạnh AB, AC lần lượt tại M, N. Mặt phẳng (A’MN) chia khối lăng trụ thành hai phần. Tỉ số thể tích (phần bé chia phần lớn) của chúng bằng

Xem đáp án » 22/07/2024 1,431

Câu 3:

Trong không gian Oxyz cho P:2mx+m21y+m2+1z+1=0. Biết rằng tồn tại hai mặt cầu cố định tiếp xúc với (P) và đi qua điểm A0;1;1. Tổng hai bán kính của hai mặt cầu đó bằng

Xem đáp án » 22/07/2024 531

Câu 4:

Miền phẳng trong hình vẽ giới hạn bởi y = f(x) và parabol y=x22x. Biết 121fxdx=34. Khi đó diện tích hình phẳng được tô trong hình vẽ bằng

Miền phẳng trong hình vẽ giới hạn bởi y = f(x) và parabol (ảnh 1)

Xem đáp án » 15/07/2024 324

Câu 5:

Cho hàm số f(x) có đạo hàm liên tục và nhận giá trị dương trên (0;+∞) thỏa mãn điều kiện 1f2x=1x2+2xf'xf3x với mọi x1;+ đồng thời f(2) = 1. Giá trị của f(4) là

Xem đáp án » 22/07/2024 307

Câu 6:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y=2mx+m2x+1 cắt đường thẳng d:y=x+3 tại hai điểm phân biệt A, B sao cho tam giác IAB có diện tích bằng 3, với I(1;1). Tổng tất cả các phần tử của S bằng

Xem đáp án » 23/07/2024 275

Câu 7:

Cho hàm số y=ax3+bx2+cx+d có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

Cho hàm số y = ax^3 +bx^2 +cx+d có đồ thị như hình vẽ (ảnh 1)

Xem đáp án » 22/07/2024 259

Câu 8:

Cho hàm số y=fx=mx4+nx3+px2+qx+r trong đó m,n,p,q,r. Biết rằng hàm số y = f’(x) có đồ thị như hình vẽ. Tập nghiệm của phương trình f(x) = r có tất cả bao nhiêu phần tử?

Cho hàm số y = f(x) = mx^4 +nx^3 +px^2 +qx +r (ảnh 1)

Xem đáp án » 23/07/2024 249

Câu 9:

Cho phương trình 8x+1+8.0,53x+3.2x+3=12524.0,5x. Khi đặt t=2x+12x, phương trình đã cho trở thành phương trình nào dưới đây?

Xem đáp án » 22/07/2024 243

Câu 10:

Một chậu nước hình nón cụt có chiều cao 3dm, bán kính đáy lớn là 2dm và bán kính đáy nhỏ là 1dm. Cho biết thể tích nước bằng 37189 thể tích của chậu, chiều cao của mực nước là

Một chậu nước hình nón cụt có chiều cao 3dm, bán kính đáy lớn là 2dm (ảnh 1)

Xem đáp án » 21/07/2024 239

Câu 11:

Kim tự tháp Maya (Pyramid Maya) được xây dựng bởi người Maya (một bộ tộc thổ dân châu Mỹ đã từng sinh sống 2.000 năm trước tại Mexico). Một kim tự tháp được thiết kế như sau:

Tầng thứ nhất là 1 viên đá hình lập phương.

Tầng thứ 2 có 1 viên đá trung tâm và 8 viên đá xung quanh tổng cộng có 9 viên đá.

Tầng thứ 3 có 9 viên đá trung tâm và 16 viên đá xung quanh tổng cộng có 25 viên đá.

Cứ tiếp tục như vậy cho đến các tầng tiếp theo.

Hỏi nếu một kim tự tháp có 15 tầng thì số lượng viên đá hình lập phương là

Kim tự tháp Maya (Pyramid Maya) được xây dựng bởi (ảnh 1)

Xem đáp án » 12/07/2024 236

Câu 12:

Cho hàm số y = f(x) là hàm chẵn, liên tục trên R và 22fx2020x+1dx=29. Khi đó 02fxdx bằng

Xem đáp án » 22/07/2024 229

Câu 13:

Nếu log8a+log4b2=5 và log4a2+log8b=7 thì giá trị của log2ab bằng

Xem đáp án » 23/07/2024 217

Câu 14:

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f’(x) như hình vẽ. Hàm số gx=2fxx2 đồng biến trên khoảng nào trong các khoảng sau đây?

Cho hàm số y = f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y = f’(x) (ảnh 1)

Xem đáp án » 22/07/2024 217

Câu 15:

Cho hàm số f(x) liên tục trên 1;+ và 03fx+1dx=4. Tính 12x.f(x)+2dx

Xem đáp án » 13/07/2024 210

Câu hỏi mới nhất

Xem thêm »
Xem thêm »