Trả lời:
Lời giải
b,
*Phương pháp giải:
Sử dụng công thức luỹ thừa
*Lý thuyết:
Cho 2 số dương a, b với . Số x thỏa mãn đẳng thức được gọi là lôgarit cơ số a của b và kí hiệu là
2. Tính chất của Logarit
Với ta có
Bảng tính chất của Logarit
II. Các quy tắc tính Logarit
1. Lôgarit của một tích
- Định lí 1: Với các số dương a, x, y và ta có:
- Chú ý: Định lí 1 có thể mở rộng cho tích của n số dương:
2. Lôgarit của một thương
- Định lí 2: Với các số dương a, x, y và ta có:
3. Lôgarit của một lũy thừa
- Định lí 3: Lôgarit của một lũy thừa bằng tích của số mũ với lôgarit của cơ số.
- Đặc biệt:
III. Bảng công thức Logarit đầy đủ
1. Công thức Logarit cơ bản
2. Công thức lũy thừa Logarit
3. Công thức đạo hàm Logarit
4. Công thức đổi cơ số, lôgarit thập phân và lôgarit tự nhiên
- Cho 3 số dương a, b, c với , ta có:
- Đặc biệt:
- Lôgarit thập phân: Là lôgarit cơ số 10. Kí hiệu:
- Lôgarit tự nhiên: Là lôgarit cơ số e. Kí hiệu:
- Chú ý: Tìm số các chữ số của một lũy thừa:
Xem thêm
Công thức logarit (2024) đầy đủ, chi tiết nhất
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Rút gọn biểu thức:
A = log2(x3 – x) – log2(x + 1) – log2(x – 1) (x > 1).
Rút gọn biểu thức:
A = log2(x3 – x) – log2(x + 1) – log2(x – 1) (x > 1).
Câu 4:
Tính giá trị của các biểu thức sau:
a) A = log23 ∙ log34 ∙ log45 ∙ log56 ∙ log67 ∙ log78;
Tính giá trị của các biểu thức sau:
a) A = log23 ∙ log34 ∙ log45 ∙ log56 ∙ log67 ∙ log78;
Câu 6:
Tính giá trị của các biểu thức sau:
b) B = log22 ∙ log24 ∙∙∙ log22n.
Tính giá trị của các biểu thức sau:
b) B = log22 ∙ log24 ∙∙∙ log22n.
Câu 8:
Viết mỗi biểu thức sau thành lôgarit của một biểu thức (giả thiết các biểu thức đều có nghĩa):
a) ;
Viết mỗi biểu thức sau thành lôgarit của một biểu thức (giả thiết các biểu thức đều có nghĩa):
a) ;
Câu 9:
Giả sử đã cho logaM và ta muốn tính logbM. Để tìm mối liên hệ giữa logaM và logbM, hãy thực hiện các yêu cầu sau:
a) Đặt y = logaM, tính M theo y;
Giả sử đã cho logaM và ta muốn tính logbM. Để tìm mối liên hệ giữa logaM và logbM, hãy thực hiện các yêu cầu sau:
a) Đặt y = logaM, tính M theo y;
Câu 10:
Viết mỗi biểu thức sau thành lôgarit của một biểu thức (giả thiết các biểu thức đều có nghĩa):
b) .
Viết mỗi biểu thức sau thành lôgarit của một biểu thức (giả thiết các biểu thức đều có nghĩa):
b) .
Câu 11:
Mức cường độ âm L đo bằng decibel (dB) của âm thanh có cường độ I (đo bằng oát trên mét vuông, kí hiệu là W/m2) được định nghĩa như sau:
,
trong đó I0 = 10– 12 W/m2 là cường độ âm thanh nhỏ nhất mà tai người có thể phát hiện được (gọi là ngưỡng nghe).
Xác định mức cường độ âm của mỗi âm sau:
a) Cuộc trò chuyện bình thường có cường độ I = 10– 7 W/m2.
Mức cường độ âm L đo bằng decibel (dB) của âm thanh có cường độ I (đo bằng oát trên mét vuông, kí hiệu là W/m2) được định nghĩa như sau:
,
trong đó I0 = 10– 12 W/m2 là cường độ âm thanh nhỏ nhất mà tai người có thể phát hiện được (gọi là ngưỡng nghe).
Xác định mức cường độ âm của mỗi âm sau:
a) Cuộc trò chuyện bình thường có cường độ I = 10– 7 W/m2.
Câu 12:
Bác An gửi tiết kiệm ngân hàng 100 triệu đồng kì hạn 12 tháng, với lãi suất không đổi là 6% một năm. Khi đó sau n năm gửi thì tổng số tiền bác An thu được (cả vốn lẫn lãi) cho bởi công thức sau:
A = 100 ∙ (1 + 0,06)n (triệu đồng).
Hỏi sau ít nhất bao nhiêu năm, tổng số tiền bác An thu được không dưới 150 triệu đồng?
Bác An gửi tiết kiệm ngân hàng 100 triệu đồng kì hạn 12 tháng, với lãi suất không đổi là 6% một năm. Khi đó sau n năm gửi thì tổng số tiền bác An thu được (cả vốn lẫn lãi) cho bởi công thức sau:
A = 100 ∙ (1 + 0,06)n (triệu đồng).
Hỏi sau ít nhất bao nhiêu năm, tổng số tiền bác An thu được không dưới 150 triệu đồng?
Câu 13:
Biết rằng khi độ cao tăng lên, áp suất không khí sẽ giảm và công thức tính áp suất dựa trên độ cao là
a = 15 500(5 – log p),
trong đó a là độ cao so với mực nước biển (tính bằng mét) và p là áp suất không khí (tính bằng pascal).
Tính áp suất không khí ở đỉnh Everest có độ cao 8 850 m so với mực nước biển.
Biết rằng khi độ cao tăng lên, áp suất không khí sẽ giảm và công thức tính áp suất dựa trên độ cao là
a = 15 500(5 – log p),
trong đó a là độ cao so với mực nước biển (tính bằng mét) và p là áp suất không khí (tính bằng pascal).
Tính áp suất không khí ở đỉnh Everest có độ cao 8 850 m so với mực nước biển.