Câu hỏi:
19/11/2024 4,782Một tổ học sinh có 6 nam và 4 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
A.
B.
C.
D.
Trả lời:
Đáp án đúng là B.
Lời giải
Chọn 2 học sinh bất kì từ 10 học sinh có (cách chọn).
Chọn 2 học sinh nữ từ 4 học sinh nữ có (cách chọn).
Vậy xác suất cần tính là
*Phương pháp giải:
Tính không gian mẫu
Tính biến cố A
Tính xác suất
*Lý thuyết:
3. Tổ hợp
Một tổ hợp chập k của n là một cách chọn k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 0 ≤ k ≤ n).
Số các tổ hợp chập k của n, kí hiệu là , được tính bằng công thức :
Chú ý :
+) <
+) Chỉnh hợp và tổ hợp có điểm giống nhau là đều chọn một số phần tử trong một tập hợp, nhưng khác nhau ở chỗ, chỉnh hợp là chọn có xếp thứ tự, còn tổ hợp là chọn không xếp thứ tự.
Xem thêm
Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - Toán 10 Kết nối tri thức
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp sao cho các nữ sinh luôn ngồi cạnh nhau?
Câu 2:
Một hộp chứa 6 viên bi gồm 3 viên bi xanh, 2 viên bi vàng và 1 viên bi trắng. Lấy ngẫu nhiên 3 viên bi từ hộp đó. Tính xác suất để lấy được ba viên bi có đủ ba màu.
Câu 3:
Cho hai đường thẳng song song . Trên lấy 5 điểm phân biệt tô màu xanh, trên lấy 8 điểm phân biệt tô màu đỏ. Xét tất cả các tam giác có đỉnh lấy từ các điểm trên. Chọn ngẫu nhiên một tam giác. Tính xác suất để tam giác được chọn có đúng hai đỉnh màu xanh.
Câu 4:
Có ba chiếc hộp mỗi hộp đựng 2 viên bi xanh và 8 viên bi đỏ. Lấy ngẫu nhiên từ mỗi hộp một viên bi. Tính xác suất để trong 3 viên bi lấy được có ít nhất 1 viên bi xanh?
Câu 6:
Một trường THPT có 4 học sinh giỏi toán là nam, 5 học sinh giỏi văn là nam và 3 học sinh giỏi văn là nữ. Cần chọn 3 em đi dự đại hội ở Tỉnh. Tính xác suất để trong 3 em được chọn có cả nam lẫn nữ, có cả học sinh giỏi toán và học sinh giỏi văn.
Câu 7:
Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 14 đỉnh của đa giác. Tính xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông.
Câu 8:
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT chuyên Vĩnh Phúc gồm 8 học sinh khối 10, 8 học sinh khối 11 và 8 học sinh khối 12. Nhà trường cần chọn 10 học sinh tham gia câu lạc bộ tiếng Anh của trường. Tính số cách chọn sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Câu 9:
Có bao nhiêu cách sắp xếp năm bạn An, Bình, Châu, Dung và Đức đứng thành một hàng ngang?
Câu 11:
Một hộp chứa chín chiếc thẻ được đánh số từ 1 đến 9. Lấy ngẫu nhiên (đồng thời) hai thẻ. Số phần tử của không gian mẫu là
Câu 12:
Giải bóng đá ngoại hạng Anh có 20 đội bóng tham gia thi đấu vòng tròn 2 lượt. Hỏi có bao nhiêu trận đấu sẽ được tổ chức?
Câu 13:
Số cách sắp xếp 4 nam sinh và 3 nữ sinh vào một dãy ghế hàng ngang có 7 chỗ ngồi là
Câu 15:
Từ một hộp đựng 30 thẻ được đánh số từ 1 đến 30, rút ngẫu nhiên 10 thẻ. Gọi A là biến cố rút được 5 thẻ đánh số lẻ, 5 thẻ đánh số chẵn và có đúng hai thẻ có số chia hết cho 10. Tìm số phần tử của A .