Câu hỏi:
13/07/2024 482
Cho logab = 4. Tính:
a) loga(a12b5);
b) loga(a√bb3√a);
c) loga(a√bb3√a);
d) loga3√b(4√a√b).
Cho logab = 4. Tính:
a) loga(a12b5);
b) loga(a√bb3√a);
c) loga(a√bb3√a);
d) loga3√b(4√a√b).
Trả lời:

a) loga(a12b5)=logaa12+logab5
=12.logaa+5.logab=12.1+5.4=412.
b) loga(a√bb3√a)=loga(a.b12a13b)
=loga(aa13.b12b)=loga(a1−13.b12−1)
=loga(a23b−12)=logaa23+logab−12
=23logaa−12logab=23.1−12.4=−43.
c) loga3b2(a2b3)=loga(a2b3)logaa3b2
=logaa2+logab3logaa3+logab2
=2+3logab3+2logab=2+3.43+2.4=1411.
d) loga3√b(4√a√b)=loga4√a√blogaa3√b
=loga4√ab12loga(ab13)=loga(ab12)14loga(ab13)
=loga(a14.b12.14)loga(ab13)=loga(a14b18)loga(ab13)=logaa14+logab18logaa+logab13=14+18logab1+13logab
=14+18.41+13.4=928.
=12.logaa+5.logab=12.1+5.4=412.
b) loga(a√bb3√a)=loga(a.b12a13b)
=loga(aa13.b12b)=loga(a1−13.b12−1)
=loga(a23b−12)=logaa23+logab−12
=23logaa−12logab=23.1−12.4=−43.
c) loga3b2(a2b3)=loga(a2b3)logaa3b2
=logaa2+logab3logaa3+logab2
=2+3logab3+2logab=2+3.43+2.4=1411.
d) loga3√b(4√a√b)=loga4√a√blogaa3√b
=loga4√ab12loga(ab13)=loga(ab12)14loga(ab13)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a > 0, a ≠ 1 và b > 0. Mệnh đề đúng là:
A. loga2(ab)=12logab;
B. loga2(ab)=2+2logab;
C. loga2(ab)=14+12logab;
D. loga2(ab)=12+12logab.
Cho a > 0, a ≠ 1 và b > 0. Mệnh đề đúng là:
A. loga2(ab)=12logab;
B. loga2(ab)=2+2logab;
C. loga2(ab)=14+12logab;
D. loga2(ab)=12+12logab.
Câu 2:
a) Cho log23 = a. Tính log1872 theo a.
b*) Cho log2 = a. Tính log2050 theo a.
a) Cho log23 = a. Tính log1872 theo a.
b*) Cho log2 = a. Tính log2050 theo a.
Câu 3:
Cho a > 0, b > 0 thỏa mãn a2 + b2 = 7ab. Khi đó, log(a+b) bằng:
A. log9+12(loga+logb);
B. log3+12loga⋅logb;
C. log3+12loga+logb;
D.log3+12(loga+logb).
Cho a > 0, b > 0 thỏa mãn a2 + b2 = 7ab. Khi đó, log(a+b) bằng:
A. log9+12(loga+logb);
B. log3+12loga⋅logb;
C. log3+12loga+logb;
D.log3+12(loga+logb).
Câu 4:
Cho a > 0, a ≠ 1. Giá trị của loga√a√a bằng:
A. 43;
B. 32;
C. 34;
D. 18.
Cho a > 0, a ≠ 1. Giá trị của loga√a√a bằng:
A. 43;
B. 32;
C. 34;
D. 18.
Câu 5:
Cho a > 0, b > 0. Mệnh đề đúng là:
A. log2(2a3b)=1+3log2a−log2b;
B. log2(2a3b)=1+13log2a−log2b;
C. log2(2a3b)=1+3log2a+log2b;
D. log2(2a3b)=1+13log2a+log2b.
A. log2(2a3b)=1+3log2a−log2b;
B. log2(2a3b)=1+13log2a−log2b;
C. log2(2a3b)=1+3log2a+log2b;
D. log2(2a3b)=1+13log2a+log2b.
Câu 6:
Tính:
a) A=25log56+49log78−331+log94+42−log23+5log12527;
b) B=36log65+101−log2−3log936log2(log2√4√2);
c) C=log14(log34⋅log23);
d) D = log4 2 . log6 4 . log8 6.
Tính:
a) A=25log56+49log78−331+log94+42−log23+5log12527;
b) B=36log65+101−log2−3log936log2(log2√4√2);
c) C=log14(log34⋅log23);
d) D = log4 2 . log6 4 . log8 6.
Câu 7:
Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ C146 có trong mẫu vật tại thời điểm t (năm) (so với thời điểm ban đầu t = 0), sau đó sử dụng công thức tính độ phóng xạ H=H0e−λt (đơn vị là Becquerel, kí hiệu Bq) với H0 là độ phóng xa ban đầu (tại thời điểm t = 0); λ=ln2T là hằng số phóng xạ, T = 5 730 (năm) (Nguồn: Vật lí 12 Nâng cao, NXBGD Việt Nam, 2014). Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ là 0,215 Bq. Biết độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq. Xác định độ tuổi của mẫu gỗ cổ đó (làm tròn kết quả đến hàng đơn vị).
Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ C146 có trong mẫu vật tại thời điểm t (năm) (so với thời điểm ban đầu t = 0), sau đó sử dụng công thức tính độ phóng xạ H=H0e−λt (đơn vị là Becquerel, kí hiệu Bq) với H0 là độ phóng xa ban đầu (tại thời điểm t = 0); λ=ln2T là hằng số phóng xạ, T = 5 730 (năm) (Nguồn: Vật lí 12 Nâng cao, NXBGD Việt Nam, 2014). Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ là 0,215 Bq. Biết độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq. Xác định độ tuổi của mẫu gỗ cổ đó (làm tròn kết quả đến hàng đơn vị).
Câu 8:
Cho a, b, c, x, y, z là các số thực dương khác 1 và logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng. Chứng minh rằng: logby=2logax⋅logczlogax+logcz.
Cho a, b, c, x, y, z là các số thực dương khác 1 và logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng. Chứng minh rằng: logby=2logax⋅logczlogax+logcz.
Câu 9:
Cho a > 0, a ≠ 2. Giá trị của loga2(a24) bằng:
A. 12;
B. 2;
C. −12;
D. – 2.
Cho a > 0, a ≠ 2. Giá trị của loga2(a24) bằng:
A. 12;
B. 2;
C. −12;
D. – 2.
Câu 10:
Không sử dụng máy tính cầm tay, hãy tính:
a) log√28;
b) log33√9;
c) 9log312;
d) 2log49.
a) log√28;
c) 9log312;
Câu 11:
Cho a > 0. Giá trị của log2(8a) bằng:
A. 3 – log2 a;
B. 4 – log2 a;
C. 1log2a;
D. 8 – log2 a.
Cho a > 0. Giá trị của log2(8a) bằng:
A. 3 – log2 a;
B. 4 – log2 a;
C. 1log2a;
D. 8 – log2 a.
Câu 12:
Nếu logab = 2, logac = 3, thì loga(b2c3) bằng:
A. 108;
B. 13;
C. 31;
D. 36.
Nếu logab = 2, logac = 3, thì loga(b2c3) bằng:
A. 108;
B. 13;
C. 31;
D. 36.
Câu 14:
Cho x > 0, y > 0 thoả mãn: x2 + 4y2 = 6xy. Chứng minh rằng: 2log(x + 2y) = 1 + logx + logy.
Câu 15:
Nếu log23 = a thì log69 bằng:
A. aa+1;
B. aa+2;
C. 2aa+2;
D. 2aa+1.
Nếu log23 = a thì log69 bằng:
A. aa+1;
B. aa+2;
C. 2aa+2;
D. 2aa+1.