Câu hỏi:
09/11/2024 2,111Cho hình chóp S.ABCD có đáy là hình thang ABCD (AD||BC). Gọi M là trung điểm CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:
A. SI (I là giao điểm của AC và BM).
B. SJ(J là giao điểm của AM và BD).
C. SO(O là giao điểm của AC và BD).
D. SP(P là giao điểm của AB và CD).
Trả lời:
Đáp án đúng là A
Lời giải
*Phương pháp giải:
Muốn tìm giao tuyến của hai mặt phẳng: ta tìm hai điểm chung thuộc cả hai mặt phẳng. Nối hai điểm chung đó được giao tuyến cần tìm.
Về dạng này điểm chung thứ nhất thường dễ tìm. Điểm chung còn lại các bạn phải tìm hai đường thẳng lần lượt thuộc hai mặt phẳng, đồng thời chúng lại thuộc mặt phẳng thứ ba và chúng không song song. Giao điểm của hai đường thẳng đó là điểm chung thứ hai.
Chú ý: Giao tuyến là đường thẳng chung của hai mặt phẳng, có nghĩa là giao tuyến là đường thẳng vừa thuộc mặt phẳng này vừa thuộc mặt phẳng kia.
*Lý thuyết:
Nếu mặt phẳng này chứa một đường thẳng mà đường thẳng đó vuông góc với mặt phẳng kia thì hai mặt phẳng đó vuông góc với nhau.
- Tính chất 1: Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến cùng vuông góc với mặt phẳng kia.
- Tính chất 2: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.
Xem thêm
Lý thuyết Hai mặt phẳng vuông góc – Toán 11 Cánh diều
TOP 40 câu Trắc nghiệm Hai mặt phẳng vuông góc (có đáp án ) – Toán 11
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm SA, SB. Khẳng định nào sau đây sai?
Câu 2:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC, CD. Giao tuyến của hai mặt phẳng (MBD) và (ABN) là
Câu 3:
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H, K lần lượt là giao điểm của IJ với CD, của MH và AC. Giao tuyến của hai mặt phẳng (ACD) và (IJM) là:
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB||CD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M. Tìm giao tuyến của hai mặt phẳng (ADM) và (SAC).
Câu 5:
Cho điểm A không nằm trên mặt phẳng chứa tam giác BCD. Lấy E, F là các điểm lần lượt nằm trên các cạnh AB,AC. Khi EF và BC cắt nhau tại I, chọn kết luận không đúng:
Câu 6:
Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc AB, AC. Giao tuyến của hai mặt phẳng (DBN) và (DCM) là:
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm SA, SB, gọi . Khẳng định nào sau đây sai?
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AB và AD. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là:
Câu 9:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là: