Câu hỏi:
14/07/2024 165Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm
A. -2 < m < -1
B. m > 0, m = -1
C. m = -2, m > -1
D. m = -2, m ≥ -1
Trả lời:
Chọn đáp án C
Phương pháp
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m song song với trục hoành.
Cách giải
Ta có:
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m+1 song song với trục hoành.
Từ BBT ta thấy để phương trình f(x)-1=m có đúng 2 nghiệm thì
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD, trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho BC=3BM, , AC=2AP. Mặt phẳng (MNP) chia khối tứ diện ABCD thành 2 phần có thể tích là . Tính tỉ số
Câu 2:
Có bao nhiêu giá trị nguyên của tham số mÎ[-10;10] để bất phương trình sau nghiệm đúng :
Câu 3:
Trong khai triển nhị thức có tất cả 17 số hạng. Khi đó giá trị n bằng
Câu 5:
Chọn ngẫu nhiên một số tự nhiên gồm 7 chữ số khác nhau có dạng . Tính xác suất để số được chọn luôn có mặt chữ số 2 và thỏa mãn
Câu 7:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(cosx)=10 có 2 nghiệm phân biệt thuộc là
Câu 8:
Trong không gian với hệ tọa độ Oxyz, cho các vectơ , . Tìm m, n để các vectơ cùng hướng
Câu 9:
Trong không gian Oxyz, cho mặt cầu có phương trình . Tọa độ tâm I và bán kính R của mặt cầu là:
Câu 11:
Cho hàm số y=f(x) có đạo hàm . Số điểm cực trị của hàm số đã cho là
Câu 13:
Cho hình chóp đều S.ABCD có đáy là hình vuông ABCD tâm O cạnh 2a, cạnh bên . Khoảng cách giữa BD và SC là
Câu 14:
Cho hàm số y=f(x), y=g(x) liên tục trên [a;b] và số thực k tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Câu 15:
Đầu mỗi tháng anh A gửi vào ngân hàng 3 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì anh A có được số tiền cả lãi và gốc nhiều hơn 100 triệu biết lãi suất không đổi trong quá trình gửi