Câu hỏi:
16/07/2024 235Cho dãy số (un) thỏa mãn và un+1 = 10un, ∀ n ∈ R* Khi đó u2018bằng
A. 102000
B. 102008
C. 101008
D. 102017
Trả lời:
Chọn A.
Dễ thấy un là cấp số nhân với q = 10
Ta có: u8 = 107u1; u10 = 109u1
Do đó PT
Giải PT ta được logu1 = -17 ⇔ u1 = 10-17 ⇒ u2018 = 102017 u1 = 102000
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một tam giác vuông có chu vi bằng 3a, và 3 cạnh lập thành một cấp số cộng. Tính độ dài cạnh lớn nhất của tam giác theo a.
Câu 2:
Ta biết rằng trong một hồ sen; số lá sen ngày hôm sau bằng 3 lần số lá sen ngày hôm trước. Biết rằng ngày đầu có 1 lá sen thì tới ngày thứ 10 hồ sẽ đầy lá sen. Hỏi nếu ngày đầu có 9 lá sen thì tới ngày thứ mấy hồ sẽ đầy lá sen?
Câu 3:
Cho cấp số nhân (un) có u1 = 2; u1 – 12u2 – 6u3 đạt giá trị lớn nhất. Tìm công bội q?
Câu 4:
Cho 3 số tạo thành một cấp số cộng có tổng 21. Nếu thêm 2, 3, 9 lần lượt vào số thứ nhất, số thứ hai, số thứ ba tạo thành một cấp số nhân. Tìm 3 số đó.
Câu 5:
Cho 3 số dương có tổng là 65 lập thành một cấp số nhân tăng, nếu bớt một đơn vị ở số hạng thứ nhất và 19 đơn vị ở số hạng thứ ba ta được một cấp số cộng. Tìm số lớn nhất trong 3 số đó?
Câu 6:
Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: x4 – 10x2 + 2m2 + 7m = 0, tính tổng lập phương của hai giá trị đó.
Câu 7:
Cho cấp số nhân (un) có u1 = 3; 15u1 – 4u2 + u3 đạt giá trị nhỏ nhất. Tìm số hạng thứ 13 của cấp số nhân đã cho.
Câu 8:
Cho a, b, c là các số thực, theo thứ tự lập thành cấp số nhân.
Biết Tìm b.
Câu 10:
Cho các số x + 2; x + 14; x + 50 theo thứ tự lập thành một cấp số nhân. Khi đó x2 + 2013 bằng:
Câu 11:
Tính tổng tất cả các số hạng của một cấp số nhân , biết số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39366.
Câu 12:
Cho dãy số (un) thỏa mãn ln2u6 – ln = ln u4 – 1 và un+1 = un.e với mọi n ≥ 1 Tìm u1
Câu 15:
Cho dãy số thỏa mãn u1 = 5; un+1 = 3un+ 4/3. Giá trị nhỏ nhất của n để u1 + u2 + … + un > 5100 - 2/3n là