Câu hỏi:
14/07/2024 138Cho biểu thức trong đó x, y là 2 số thực thỏa mãn . Biết rằng giá trị lớn nhất của P có dạng với a, b, . Giá trị của biểu thức a+b–c là
A. 3.
B. 2.
C. 4.
D. 5.
Trả lời:
Đáp án B
Ta có: (1)
Dễ thấy đồng biến trên R nên
,
. Nếu thì P’>0.
Xét 0 < x < 1: Ta có: (*)
Xét , có , hay y = g(t) nghịch biến trên (0;1). Khi đó
Suy ra . Vậy
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau
Có bao nhiêu mệnh đề đúng trong số các mệnh đề sau đối với hàm số g(x)=f(2–x)–2?
I. Hàm số g(x) đồng biến trên khoảng (–4;–2).
II. Hàm số g(x) nghịch biến trên khoảng (0;2).
III. Hàm số g(x) đạt cực tiểu tại điểm –2.
IV. Hàm số g(x) có giá trị cực đại bằng –3.
Câu 3:
Xét số thực , biểu thức có 2021 dấu căn thức. Phương trình có bao nhiêu nghiệm thực phân biệt?
Câu 4:
Tập hợp các điểm biểu diễn số phức z thỏa mãn là đường tròn có tâm I, bán kính R. Tọa độ tâm I và bán kính R của đường tròn là
Câu 5:
Cho đường cong (C): và đường thẳng cắt (C) tại hai điểm phân biệt nằm trong góc phần tư thứ nhất của hệ trục tọa độ Oxy và chia thành 2 miền phẳng (gạch sọc và kẻ caro) có diện tích bằng nhau (tham khảo hình vẽ). Mệnh đề nào dưới đây đúng?
Câu 6:
Phương trình có hai nghiệm x1, x2 (x1<x2). Giá trị biểu thức A = 2x1+3x2 là
Câu 7:
Trong không gian Oxyz, cho mặt cầu (S1) có tâm I(2;1;0), bán kính bằng 3 và mặt cầu (S2) có tâm J(0;1;0), bán kính bằng 2. Đường thẳng Δ thay đổi tiếp xúc với cả hai mặt cầu (S1), (S2). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của khoảng cách từ điểm A(1;1;1) đến đường thẳng Δ. Giá trị tổng M+m bằng
Câu 8:
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [–2019;2019] sao cho hàm số có 5 điểm cực trị?
Câu 9:
Cho hình chóp S.ABC có , tam giác SAB đều cạnh a và tam giác SAC vuông tại A. Mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Thể tích khối cầu ngoại tiếp hình chóp SABC là
Câu 10:
Một vật chuyển động với gia tốc a(t) = –20(1+2t)–2 (m/s2). Khi t=0 thì vận tốc của vật là 30m/s. Quãng đường vật đó di chuyển sau 2 giây bằng
Câu 11:
Cho hình chóp S.ABCD có đáy là hình vuông. Hình chiếu vuông góc H của S nằm trong hình vuông ABCD. Hai mặt phẳng (SAD), (SBC) vuông góc với nhau. Góc giữa hai mặt phẳng (SAB), (SBC) bằng 60°, góc giữa hai mặt phẳng (SAB), (SAD) bằng 45°. Biết rằng khoảng cách từ H tới (SAB) bằng a. Thể tích khối chóp S.ABCD là
Câu 12:
Cho hàm số y = f(x) có đạo hàm trên [0;3], thỏa mãn với mọi và . Tính tích phân
Câu 13:
Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD. Thể tích V của khối chóp A.GBC là
Câu 14:
Cho hàm số y = f(x) liên tục trên [0;2] có đồ thị như hình vẽ. Biết S1, S2 có diện tích lần lượt là 1 và 5. Tích phân bằng
Câu 15:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, ; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm C đến mặt phẳng (SAB) bằng . Thể tích khối chóp S.ABC bằng