Câu hỏi:
18/07/2024 232Cho hình chóp S.ABC có , tam giác SAB đều cạnh a và tam giác SAC vuông tại A. Mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Thể tích khối cầu ngoại tiếp hình chóp SABC là
A.
B.
C.
D.
Trả lời:
Đáp án A
Từ giả thiết ta có ABC là tam giác cân tại A.
Gọi E, F lần lượt là trung điểm SB, BC
,
vuông tại S.
Ta có AF là trục đường tròn ngoại tiếp tam giác SBC nên tâm O của mặt cầu ngoại tiếp hình chóp chính là tâm đường tròn ngoại tiếp tam giác ABC.
Vì nên bán kính mặt cầu là .
Suy ra thế tích khối cầu ngoại tiếp S.ABC là .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau
Có bao nhiêu mệnh đề đúng trong số các mệnh đề sau đối với hàm số g(x)=f(2–x)–2?
I. Hàm số g(x) đồng biến trên khoảng (–4;–2).
II. Hàm số g(x) nghịch biến trên khoảng (0;2).
III. Hàm số g(x) đạt cực tiểu tại điểm –2.
IV. Hàm số g(x) có giá trị cực đại bằng –3.
Câu 3:
Xét số thực , biểu thức có 2021 dấu căn thức. Phương trình có bao nhiêu nghiệm thực phân biệt?
Câu 4:
Tập hợp các điểm biểu diễn số phức z thỏa mãn là đường tròn có tâm I, bán kính R. Tọa độ tâm I và bán kính R của đường tròn là
Câu 5:
Cho đường cong (C): và đường thẳng cắt (C) tại hai điểm phân biệt nằm trong góc phần tư thứ nhất của hệ trục tọa độ Oxy và chia thành 2 miền phẳng (gạch sọc và kẻ caro) có diện tích bằng nhau (tham khảo hình vẽ). Mệnh đề nào dưới đây đúng?
Câu 6:
Trong không gian Oxyz, cho mặt cầu (S1) có tâm I(2;1;0), bán kính bằng 3 và mặt cầu (S2) có tâm J(0;1;0), bán kính bằng 2. Đường thẳng Δ thay đổi tiếp xúc với cả hai mặt cầu (S1), (S2). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của khoảng cách từ điểm A(1;1;1) đến đường thẳng Δ. Giá trị tổng M+m bằng
Câu 7:
Phương trình có hai nghiệm x1, x2 (x1<x2). Giá trị biểu thức A = 2x1+3x2 là
Câu 8:
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [–2019;2019] sao cho hàm số có 5 điểm cực trị?
Câu 9:
Một vật chuyển động với gia tốc a(t) = –20(1+2t)–2 (m/s2). Khi t=0 thì vận tốc của vật là 30m/s. Quãng đường vật đó di chuyển sau 2 giây bằng
Câu 10:
Cho hình chóp S.ABCD có đáy là hình vuông. Hình chiếu vuông góc H của S nằm trong hình vuông ABCD. Hai mặt phẳng (SAD), (SBC) vuông góc với nhau. Góc giữa hai mặt phẳng (SAB), (SBC) bằng 60°, góc giữa hai mặt phẳng (SAB), (SAD) bằng 45°. Biết rằng khoảng cách từ H tới (SAB) bằng a. Thể tích khối chóp S.ABCD là
Câu 11:
Cho hàm số y = f(x) liên tục trên [0;2] có đồ thị như hình vẽ. Biết S1, S2 có diện tích lần lượt là 1 và 5. Tích phân bằng
Câu 12:
Cho hàm số y = f(x) có đạo hàm trên [0;3], thỏa mãn với mọi và . Tính tích phân
Câu 13:
Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD. Thể tích V của khối chóp A.GBC là
Câu 14:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, ; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm C đến mặt phẳng (SAB) bằng . Thể tích khối chóp S.ABC bằng
Câu 15:
Cho số phức z thỏa mãn |z–1–i|=1. Khi 3|z|+2|z–4–4i| đạt giá trị lớn nhất, giá trị |z| bằng