Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau
Lời giải Bài 7 trang 25 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.
Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 4: Phép đối xứng tâm
Bài 7 trang 25 Chuyên đề Toán 11: Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau:
– Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a).
– Vẽ hoa và lá trên bề mặt tam giác (Hình 14b).
– Dùng kéo cắt theo đường đã vẽ (Hình 14c).
– Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d).
Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm.
Lời giải:
⦁ Giả sử ta chọn điểm O là giao điểm của các đường nếp gấp trên hình hoa văn vừa làm (như hình vẽ).
Lấy điểm A bất kì trên hình hoa văn vừa làm sao cho A ≠ O.
Khi đó ta luôn xác định được một điểm A’ trên hình hoa văn vừa làm sao cho A’ = ĐO(A).
Lấy điểm B trùng O. Khi đó ta có B = ĐO(B).
Tương tự như vậy, ta chọn các điểm khác bất kì nằm trên hình hoa văn vừa làm, ta đều xác định được ảnh của các điểm đó qua ĐO trên hình hoa văn vừa làm.
Do đó phép đối xứng tâm O biến hình hoa văn vừa làm thành chính nó.
Vậy O là tâm đối xứng của hình hoa văn vừa làm.
⦁ Giả sử ta chọn đường thẳng d trên hình hoa văn vừa làm như hình vẽ.
Lấy điểm E trên hình hoa văn vừa làm nhưng không nằm trên đường thẳng d.
Ta đặt E’ = Đd(E).
Khi đó E’ nằm trên hình hoa văn vừa làm.
Lấy điểm F trên hình hoa văn vừa làm và nằm trên đường thẳng d.
Ta thấy F = Đd(F).
Tương tự như vậy, ta chọn các điểm khác bất kì trên hình hoa văn vừa làm, ta đều xác định được ảnh của điểm đó qua Đd trên hình hoa văn vừa làm.
Do đó phép đối xứng trục d biến hình hoa văn vừa làm thành chính nó.
Vậy d là trục đối xứng của hình hoa văn vừa làm.
Chú ý: Hình hoa văn vừa làm có 4 trục đối xứng (d, d1, d2, d3).
Xem thêm lời giải bài tập Chuyên đề Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Khởi động trang 20 Chuyên đề Toán 11: Trong các hình sau, hình nào có tâm đối xứng?
Khám phá 1 trang 20 Chuyên đề Toán 11: Cho điểm O. Gọi f là quy tắc xác định như sau:
Thực hành 1 trang 21 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho các điểm I(1; 1), M(2; 2)...
Vận dụng 1 trang 21 Chuyên đề Toán 11: Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.
Thực hành 2 trang 22 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, tìm ảnh qua ĐO của...
Thực hành 3 trang 23 Chuyên đề Toán 11: a) Trong Hình 9, hình nào có tâm đối xứng? Tìm tâm đối xứng (nếu có).
Bài 1 trang 24 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
Xem thêm lời giải bài tập Chuyên đề Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo