Trắc nghiệm Các dạng toán về phép cộng và phép trừ phân số (có đáp án)
Trắc nghiệm Các dạng toán về phép cộng và phép trừ phân số (có đáp án)
-
207 lượt thi
-
23 câu hỏi
-
40 phút
Danh sách câu hỏi
Câu 1:
23/07/2024Thực hiện phép tính \[\frac{{65}}{{91}} + \frac{{ - 44}}{{55}}\] ta được kết quả là:
\[\frac{{65}}{{91}} + \frac{{ - 44}}{{55}} = \frac{5}{7} + \frac{{ - 4}}{5} = \frac{{25}}{{35}} + \frac{{ - 28}}{{35}} = \frac{{ - 3}}{{35}}\]
Đáp án cần chọn là: C
Câu 2:
22/07/2024Đáp án A: \[\frac{{ - 4}}{{11}} + \frac{7}{{ - 11}} = \frac{{ - 4}}{{11}} + \frac{{ - 7}}{{11}} = \frac{{ - 11}}{{11}} = - 1 < 1\] nên A sai
Đáp án B: \[\frac{{ - 4}}{{11}} + \frac{7}{{ - 11}} = \frac{{ - 4}}{{11}} + \frac{{ - 7}}{{11}} = \frac{{ - 11}}{{11}} = - 1 < 0\] nên B đúng.
Đáp án C: \[\frac{8}{{11}} + \frac{7}{{ - 11}} = \frac{8}{{11}} + \frac{{ - 7}}{{11}} = \frac{1}{{11}} < 1\] nên C sai.
Đáp án D: \[\frac{{ - 4}}{{11}} + \frac{{ - 7}}{{11}} = \frac{{ - 11}}{{11}} = - 1\] nên D sai.
Đáp án cần chọn là: B
>>>Câu 3:
22/07/2024Tìm x biết \(x = \frac{3}{{13}} + \frac{9}{{20}}\)
\[\frac{3}{{13}} + \frac{9}{{20}} = \frac{{60}}{{260}} + \frac{{117}}{{260}} = \frac{{177}}{{260}}\]
Vậy\[x = \frac{{177}}{{260}}\]
Đáp án cần chọn là: B
Câu 4:
22/07/2024Tính hợp lý biểu thức \[\frac{{ - 9}}{7} + \frac{{13}}{4} + \frac{{ - 1}}{5} + \frac{{ - 5}}{7} + \frac{3}{4}\] ta được kết quả là
\[\frac{{ - 9}}{7} + \frac{{13}}{4} + \frac{{ - 1}}{5} + \frac{{ - 5}}{7} + \frac{3}{4}\]
\[ = \left( {\frac{{ - 9}}{7} + \frac{{ - 5}}{7}} \right) + \left( {\frac{{13}}{4} + \frac{3}{4}} \right) + \frac{{ - 1}}{5}\]
\[ = \frac{{ - 14}}{7} + \frac{{16}}{4} + \frac{{ - 1}}{5}\]
\[ = \left( { - 2} \right) + 4 + \frac{{ - 1}}{5}\]
\[ = 2 + \frac{{ - 1}}{5}\]
\[ = \frac{{10}}{5} + \frac{{ - 1}}{5}\]
\[ = \frac{9}{5}\]
Đáp án cần chọn là: A
Câu 5:
22/07/2024Cho \[A = \left( {\frac{1}{4} + \frac{{ - 5}}{{13}}} \right) + \left( {\frac{2}{{11}} + \frac{{ - 8}}{{13}} + \frac{3}{4}} \right)\] . Chọn câu đúng.
\[A = \left( {\frac{1}{4} + \frac{{ - 5}}{{13}}} \right) + \left( {\frac{2}{{11}} + \frac{{ - 8}}{{13}} + \frac{3}{4}} \right)\]
\[A = \frac{1}{4} + \frac{{ - 5}}{{13}} + \frac{2}{{11}} + \frac{{ - 8}}{{13}} + \frac{3}{4}\]
\[A = \left( {\frac{1}{4} + \frac{3}{4}} \right) + \left( {\frac{{ - 5}}{{13}} + \frac{{ - 8}}{{13}}} \right) + \frac{2}{{11}}\]
\[A = 1 + \left( { - 1} \right) + \frac{2}{{11}}\]
\[A = \frac{2}{{11}}\]
Đáp án cần chọn là: B
Câu 6:
22/07/2024Cho \[M = \left( {\frac{{21}}{{31}} + \frac{{ - 16}}{7}} \right) + \left( {\frac{{44}}{{53}} + \frac{{10}}{{31}}} \right) + \frac{9}{{53}}\] và \[N = \frac{1}{2} + \frac{{ - 1}}{5} + \frac{{ - 5}}{7} + \frac{1}{6} + \frac{{ - 3}}{{35}} + \frac{1}{3} + \frac{1}{{41}}\] .
Chọn câu đúng.
\[M = \left( {\frac{{21}}{{31}} + \frac{{ - 16}}{7}} \right) + \left( {\frac{{44}}{{53}} + \frac{{10}}{{31}}} \right) + \frac{9}{{53}}\]
\[M = \frac{{21}}{{31}} + \frac{{ - 16}}{7} + \frac{{44}}{{53}} + \frac{{10}}{{31}} + \frac{9}{{53}}\]
\[M = \left( {\frac{{21}}{{31}} + \frac{{10}}{{31}}} \right) + \left( {\frac{{44}}{{53}} + \frac{9}{{53}}} \right) + \frac{{ - 16}}{7}\]
\[M = 1 + 1 + \frac{{ - 16}}{7}\]
\[M = 2 + \frac{{ - 16}}{7}\]
\[M = \frac{{ - 2}}{7}\]
\[N = \frac{1}{2} + \frac{{ - 1}}{5} + \frac{{ - 5}}{7} + \frac{1}{6} + \frac{{ - 3}}{{35}} + \frac{1}{3} + \frac{1}{{41}}\]
\[N = \left( {\frac{1}{2} + \frac{1}{6} + \frac{1}{3}} \right) + \left( {\frac{{ - 1}}{5} + \frac{{ - 5}}{7} + \frac{{ - 3}}{{35}}} \right) + \frac{1}{{41}}\]
\[N = \frac{{3 + 1 + 2}}{6} + \frac{{\left( { - 7} \right) + \left( { - 25} \right) + \left( { - 3} \right)}}{{35}} + \frac{1}{{41}}\]
\[\begin{array}{l}N = 1 + \left( { - 1} \right) + \frac{1}{{41}}\\N = \frac{1}{{41}}\end{array}\]
Đáp án cần chọn là: D
Câu 7:
22/07/2024Tìm \(x \in {\rm Z}\) biết \[\frac{5}{6} + \frac{{ - 7}}{8} \le \frac{x}{{24}} \le \frac{{ - 5}}{{12}} + \frac{5}{8}\]
\[\frac{5}{6} + \frac{{ - 7}}{8} \le \frac{x}{{24}} \le \frac{{ - 5}}{{12}} + \frac{5}{8}\]
\[\begin{array}{l}\frac{{ - 1}}{{24}} \le \frac{x}{{24}} \le \frac{5}{{24}}\\ - 1 \le x \le 5\end{array}\]
\[x \in \left\{ { - 1;0;1;2;3;4;5} \right\}\]
Đáp án cần chọn là: B
Câu 8:
22/07/2024Tìm tập hợp các số nguyên n để \[\frac{{n - 8}}{{n + 1}} + \frac{{n + 3}}{{n + 1}}\] là một số nguyên
Ta có:
\[\begin{array}{l}\frac{{n - 8}}{{n + 1}} + \frac{{n + 3}}{{n + 1}} = \frac{{n - 8 + n + 3}}{{n + 1}} = \frac{{2n - 5}}{{n + 1}} = \frac{{\left( {2n + 2} \right) - 7}}{{n + 1}} = \frac{{2\left( {n + 1} \right) - 7}}{{n + 1}}\\ = \frac{{2\left( {n + 1} \right)}}{{n + 1}} - \frac{7}{{n + 1}} = 2 - \frac{7}{{n + 1}}\end{array}\]
Yêu cầu bài toán thỏa mãn nếu \[\frac{7}{{n + 1}} \in Z\] hay n + 1 ∈ Ư(7) = {±1; ±7}
Ta có bảng:
Vậy n ∈ {0; −2; 6; −8}
Đáp án cần chọn là: C
Câu 9:
22/07/2024Có bao nhiêu số nguyên x thỏa mãn \[\frac{{15}}{{41}} + \frac{{ - 138}}{{41}} \le x < \frac{1}{2} + \frac{1}{3} + \frac{1}{6}\]
\[\frac{{15}}{{41}} + \frac{{ - 138}}{{41}} \le x < \frac{1}{2} + \frac{1}{3} + \frac{1}{6}\]
−3 ≤ x < 1
x ∈ {− 3; −2; −1;0}
Vậy có tất cả 4 giá trị của x
Đáp án cần chọn là: D
Câu 10:
22/07/2024Tính tổng \[A = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \ldots + \frac{1}{{99.100}}\] ta được
\[A = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \ldots + \frac{1}{{99.100}}\]
\[A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\]
\[A = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{99}} - \frac{1}{{100}}\]
\[A = 1 - \frac{1}{{100}} = \frac{{99}}{{100}}\]
So sánh A với \[\frac{3}{5}\] và \[\frac{4}{5}\]
Ta có: \[\frac{3}{5} = \frac{{60}}{{100}};\frac{4}{5} = \frac{{80}}{{100}}\]
\[ \Rightarrow \frac{{60}}{{100}} < \frac{{80}}{{100}} < \frac{{99}}{{100}} \Rightarrow A >\frac{4}{5} >\frac{3}{5}\]</>Đáp án cần chọn là: D
Câu 11:
22/07/2024Cho \[S = \frac{1}{{21}} + \frac{1}{{22}} + \frac{1}{{23}} + ... + \frac{1}{{35}}\] . Chọn câu đúng.
\[S = \frac{1}{{21}} + \frac{1}{{22}} + \frac{1}{{23}} + ... + \frac{1}{{35}}\]
\[S = \left( {\frac{1}{{21}} + ... + \frac{1}{{25}}} \right) + \left( {\frac{1}{{26}} + ... + \frac{1}{{30}}} \right) + \left( {\frac{1}{{31}} + ... + \frac{1}{{35}}} \right)\]
\[S >\left( {\frac{1}{{25}} + ... + \frac{1}{{25}}} \right) + \left( {\frac{1}{{30}} + ... + \frac{1}{{30}}} \right) + \left( {\frac{1}{{35}} + ... + \frac{1}{{35}}} \right)\]
\[S >\frac{1}{5} + \frac{1}{6} + \frac{1}{7} = \frac{{107}}{{210}} >\frac{1}{2}\]
Vậy \[S >\frac{1}{2}\]
Đáp án cần chọn là: A
Câu 12:
22/07/2024Có bao nhiêu cặp số a; b ∈ Z thỏa mãn \[\frac{a}{5} + \frac{1}{{10}} = \frac{{ - 1}}{b}\]
\[\frac{a}{5} + \frac{1}{{10}} = \frac{{ - 1}}{b}\]
\[\frac{{2{\rm{a}}}}{{10}} + \frac{1}{{10}} = \frac{{ - 1}}{b}\]
\[\frac{{2{\rm{a}} + 1}}{{10}} = \frac{{ - 1}}{b}\]
\[\left( {2{\rm{a}} + 1} \right).b = - 10\]
2a + 1 là số lẻ; 2a + 1 là ước của −10
Vậy có 44 cặp số (a;b)(a;b) thỏa mãn bài toán.
Đáp án cần chọn là: C
Câu 13:
22/07/2024Kết quả của phép tính \[\frac{3}{4} - \frac{7}{{20}}\] là:
\[\frac{3}{4} - \frac{7}{{20}} = \frac{{15}}{{20}} - \frac{7}{{20}} = \frac{8}{{20}} = \frac{2}{5}\]
Đáp án cần chọn là: C
Câu 14:
22/07/2024Giá trị của x thỏa mãn \[\frac{{15}}{{20}} - x = \frac{7}{{16}}\]
\[\frac{{15}}{{20}} - x = \frac{7}{{16}}\]
\[\begin{array}{*{20}{l}}{ - x = \frac{7}{{16}} - \frac{{15}}{{20}}}\\{ - x = - \frac{5}{{16}}}\\{x = \frac{5}{{16}}}\end{array}\]
Đáp án cần chọn là: B
Câu 15:
22/07/2024Tính \[\frac{4}{{15}} - \frac{2}{{65}} - \frac{4}{{39}}\] ta được
\[\frac{4}{{15}} - \frac{2}{{65}} - \frac{4}{{39}}\]
\[ = \frac{{52}}{{195}} - \frac{6}{{195}} - \frac{{20}}{{195}}\]
\[ = \frac{{52 - 6 - 20}}{{195}}\]
\[ = \frac{{26}}{{195}} = \frac{2}{{15}}\]
Đáp án cần chọn là: B
Câu 16:
22/07/2024Tính hợp lý \[B = \frac{{31}}{{23}} - \left( {\frac{7}{{30}} + \frac{8}{{23}}} \right)\] ta được
\[\begin{array}{*{20}{l}}{B = \frac{{31}}{{23}} - \left( {\frac{7}{{30}} + \frac{8}{{23}}} \right)}\\{B = \frac{{31}}{{23}} - \frac{7}{{30}} - \frac{8}{{23}}}\\{B = \left( {\frac{{31}}{{23}} - \frac{8}{{23}}} \right) - \frac{7}{{30}}}\\{B = 1 - \frac{7}{{30}}}\\{B = \frac{{23}}{{30}}}\end{array}\]
Đáp án cần chọn là: A
Câu 17:
22/07/2024Cho \[M = \left( {\frac{1}{3} + \frac{{12}}{{67}} + \frac{{13}}{{41}}} \right) - \left( {\frac{{79}}{{67}} - \frac{{28}}{{41}}} \right)\] và \[N = \frac{{38}}{{45}} - \left( {\frac{8}{{45}} - \frac{{17}}{{51}} - \frac{3}{{11}}} \right)\] . Chọn câu đúng.
\[M = \left( {\frac{1}{3} + \frac{{12}}{{67}} + \frac{{13}}{{41}}} \right) - \left( {\frac{{79}}{{67}} - \frac{{28}}{{41}}} \right)\]
\[M = \frac{1}{3} + \frac{{12}}{{67}} + \frac{{13}}{{41}} - \frac{{79}}{{67}} + \frac{{28}}{{41}}\]
\[M = \frac{1}{3} + \left( {\frac{{12}}{{67}} - \frac{{79}}{{67}}} \right) + \left( {\frac{{13}}{{41}} + \frac{{28}}{{41}}} \right)\]
\[M = \frac{1}{3} + \left( { - 1} \right) + 1\]
\[M = \frac{1}{3}\]
\[\begin{array}{*{20}{l}}{N = \frac{{38}}{{45}} - \left( {\frac{8}{{45}} - \frac{{17}}{{51}} - \frac{3}{{11}}} \right)}\\{N = \frac{{38}}{{45}} - \frac{8}{{45}} + \frac{{17}}{{51}} + \frac{3}{{11}}}\\{N = \left( {\frac{{38}}{{45}} - \frac{8}{{45}}} \right) + \frac{{17}}{{51}} + \frac{3}{{11}}}\\{N = \frac{2}{3} + \frac{1}{3} + \frac{3}{{11}}}\\{N = 1 + \frac{3}{{11}}}\\{N = \frac{{14}}{{11}}}\end{array}\]
Vì \[\frac{1}{3} < 1 < \frac{{14}}{{11}}\] nên M < 1 < N
Đáp án cần chọn là: D
Câu 18:
22/07/2024Tìm x sao cho \[x - \frac{{ - 7}}{{12}} = \frac{{17}}{{18}} - \frac{1}{9}\]
\[\begin{array}{*{20}{l}}{x - \frac{{ - 7}}{{12}} = \frac{{17}}{{18}} - \frac{1}{9}}\\{x - \frac{{ - 7}}{{12}} = \frac{5}{6}}\\{x = \frac{5}{6} + \frac{{ - 7}}{{12}}}\\{x = \frac{1}{4}}\end{array}\]
Đáp án cần chọn là: C
Câu 19:
22/07/2024Giá trị nào của x dưới đây thỏa mãn \[\frac{{29}}{{30}} - \left( {\frac{{13}}{{23}} + x} \right) = \frac{7}{{69}}\] ?
\[\begin{array}{*{20}{l}}{\frac{{29}}{{30}} - \left( {\frac{{13}}{{23}} + x} \right) = \frac{7}{{69}}}\\{\frac{{13}}{{23}} + x = \frac{{29}}{{30}} - \frac{7}{{69}}}\\{\frac{{13}}{{23}} + x = \frac{{199}}{{230}}}\\{x = \frac{{199}}{{230}} - \frac{{13}}{{23}}}\\{x = \frac{3}{{10}}}\end{array}\]
Đáp án cần chọn là: A
Câu 20:
22/07/2024Có bao nhiêu số nguyên xx thỏa mãn \[\frac{{ - 5}}{{14}} - \frac{{37}}{{14}} \le x \le \frac{{31}}{{73}} - \frac{{313131}}{{737373}}\] ?
\[\frac{{ - 5}}{{14}} - \frac{{37}}{{14}} \le x \le \frac{{31}}{{73}} - \frac{{313131}}{{737373}}\]
\[\frac{{ - 5}}{{14}} + \frac{{ - 37}}{{14}} \le x \le \frac{{31}}{{73}} - \frac{{313131:10101}}{{737373:10101}}\]
\[\frac{{ - 42}}{{14}} \le x \le \frac{{31}}{{73}} - \frac{{31}}{{73}}\]
\[ - 3 \le x \le 0\]
\[x \in \left\{ { - 3; - 2; - 1;0} \right\}\]
Vậy có 4 giá trị của x thỏa mãn bài toán.
Đáp án cần chọn là: C
Câu 21:
22/07/2024Câu 18093
Vận dụngHai vòi nước cùng chảy vào một bể cạn. Vòi thứ nhất chảy riêng trong 10 giờ đầy bể, vòi thứ hai chảy riêng trong 8 giờ đầy bể. Vòi thứ ba tháo nước ra sau 5 giờ thì bể cạn. Nếu bể đang cạn, ta mở cả ba vòi thì sau 1 giờ chảy được bao nhiêu phần bể?
Trong 1 giờ, vòi thứ nhất chảy được là: \[1:10 = \frac{1}{{10}}\] (bể)
Trong 1 giờ, vòi thứ hai chảy được là: \[1:8 = \frac{1}{8}\] (bể)
Trong 1 giờ, vòi thứ ba tháo được là: \[1:5 = \frac{1}{5}\] (bể)
Sau 11 giờ, lượng nước trong bể có là:
\[\frac{1}{{10}} + \frac{1}{8} - \frac{1}{5} = \frac{1}{{40}}\] (bể)
Đáp án cần chọn là: B
Câu 22:
22/07/2024Cho x là số thỏa mãn \[x + \frac{4}{{5.9}} + \frac{4}{{9.13}} + \frac{4}{{13.17}} + ... + \frac{4}{{41.45}} = \frac{{ - 37}}{{45}}\] . Chọn kết luận đúng:
\[x + \frac{4}{{5.9}} + \frac{4}{{9.13}} + \frac{4}{{13.17}} + ... + \frac{4}{{41.45}} = \frac{{ - 37}}{{45}}\]
\[x + \frac{1}{5} - \frac{1}{9} + \frac{1}{9} - \frac{1}{{13}} + ... + \frac{1}{{41}} - \frac{1}{{45}} = - \frac{{37}}{{45}}\]
\[x + \frac{1}{5} - \frac{1}{{45}} = - \frac{{37}}{{45}}\]
\[x + \frac{8}{{45}} = - \frac{{37}}{{45}}\]
\[x = - \frac{{37}}{{45}} - \frac{8}{{45}}\]
\[x = - 1\]
Vì -1là số nguyên âm nên đáp án A đúng.
Đáp án cần chọn là: A
Câu 23:
22/07/2024Cho \[P = \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{2002}^2}}} + \frac{1}{{{{2003}^2}}}\] . Chọn câu đúng
\[P = \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{{2002}^2}}} + \frac{1}{{{{2003}^2}}}\]
\[ < \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{2001.2002}} + \frac{1}{{2002.2003}}\]
\[ = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ... + \frac{1}{{2001}} - \frac{1}{{2002}} + \frac{1}{{2002}} - \frac{1}{{2003}}\]
\[ = 1 - \frac{1}{{2003}} = \frac{{2002}}{{2003}} < 1\]
Vậy P < 1
Đáp án cần chọn là: C
Có thể bạn quan tâm
- Trắc nghiệm Phép cộng và phép trừ phân số (có đáp án) (218 lượt thi)
- Trắc nghiệm Các dạng toán về phép cộng và phép trừ phân số (có đáp án) (206 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Giá trị phân số của một số (có đáp án) (280 lượt thi)
- Trắc nghiệm So sánh phân số (có đáp án) (279 lượt thi)
- Trắc nghiệm Tính chất cơ bản của phân số (có đáp án) (256 lượt thi)
- Trắc nghiệm Các dạng toán về phép nhân và phép chia phân số (có đáp án) (246 lượt thi)
- Trắc nghiệm Hỗn số (có đáp án) (231 lượt thi)
- Trắc nghiệm Phép nhân và phép chia phân số (có đáp án) (227 lượt thi)
- Trắc nghiệm Bài tập ôn tập chương 5: Phân số (có đáp án) (217 lượt thi)
- Trắc nghiệm Phân số với tử số và mẫu số là số nguyên (có đáp án) (210 lượt thi)
- Trắc nghiệm Các dạng toán về phân số với tử số và mẫu số là số nguyên (có đáp án) (205 lượt thi)