Trang chủ Lớp 10 Toán Thi Online Trắc nghiệm Toán 10 KNTT Bài 25. Nhị thức Newton (Phần 2) có đáp án

Thi Online Trắc nghiệm Toán 10 KNTT Bài 25. Nhị thức Newton (Phần 2) có đáp án

Trắc nghiệm Toán 10 KNTT Bài 25. Nhị thức Newton (Vận dụng) có đáp án

  • 757 lượt thi

  • 5 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

14/07/2024

Cho S = 32x5 – 80x4 + 80x3 – 40x2 + 10x – 1. Khi đó, S là khai triển của:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

S = 32x5 – 80x4 + 80x3 – 40x2 + 10x – 1

= (2x)5 + 5.(2x)4(–1) + 10.(2x)3.( –1)2 + 10.(2x)2.(–1)3 + 5.2x(–1)4 + (–1)5

= (2x – 1)5.


Câu 2:

18/07/2024

Trong khai triển của (3x – 1)5, số mũ của x được sắp xếp theo luỹ thừa tăng dần, hãy tìm hạng tử thứ 2:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

(3x – 1)5 = (3x)5 + 5(3x)4.(−1) + 10(3x)3 .(−1)2 + 10(3x)2.(−1)3 + 5.3x.(−1)4 + (−1)5 = 243x5 − 405x4 + 270x3 − 90x2 + 15x – 1

=  – 1 + 15x − 90x2 + 270x3 − 405x4 + 243x5.

Hạng tử thứ 2 của khai triển là: 15x.


Câu 3:

19/07/2024

Giả sử hệ số của x trong khai triển của x2+rx5 bằng 640. Xác định giá trị của r

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có:

x2+rx5=(x2)5+5(x2)4.rx+10(x2)3.rx2+10(x2)2.rx3+5x2.rx4+rx5

 = x10+5rx7+10r2x4+10r3x+5r4x2+r5x5.

Theo giả thiết ta có: 10r3 = 640 r3 = 64 r = 4.


Câu 4:

14/07/2024

Số hạng chứa x3 trong khai triển (x – 5)4 + (x + 5)4 là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có:

(x + 5)4 = x4 + 4x3.5 + 6x2.52 + 4x.53 + 54

= x4 + 20x3 + 150x2 + 500x + 625

(x − 5)4 = x4 + 4x3.(−5) + 6x2. (−5)2 + 4x.(−5)3 + (−5)4

= x4 − 20x3 + 150x2 − 500x + 625

Khi đó: (x – 5)4 + (x + 5)4

= x4 + 20x3 + 150x2 + 500x + 625 + x4 − 20x3 + 150x2 − 500x + 625

= 2x4 + 300x2 + 1250.

Vậy số hạng chứa x3 trong khai triển trên là 0x3

Câu 5:

14/07/2024

Tính tổng S = 9995.C50+9994.C51+9993.C52+9992.C53+999.C54+1

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Xét khai triển:

(999 + x)59995.C50+9994.C51x+9993.C52x2+9992.C53x3+999.C54.x4+x5

Thay x = 1 vào hai vế của khai triển ta có:

(999 + 1)59995.C50+9994.C51+9993.C52+9992.C53+999.C54+1

Vậy tổng S = (999 + 1)5 = 10005.


Bắt đầu thi ngay