Chứng minh rằng đường kính đi qua điểm chính giữa của một cung

Với giải bài tập 14 trang 72 sgk Toán lớp 9 Tập 2 được biên soạn lời giải chi tiết sẽ giúp học sinh biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:

1 10,157 25/11/2024


Giải Toán 9 Bài 2: Liên hệ giữa cung và dây

Video Giải Bài tập 14 trang 72 Toán lớp 9 Tập 2

Bài tập 14 trang 72 SGK Toán lớp 9 Tập 2:

a) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Mệnh đề đảo có đúng không? Hãy nêu thêm điều kiện để mệnh đề đảo đúng.

b) Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.

Lời giải:

Tài liệu VietJack

a)

Mệnh đề: Đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy.

Chứng minh:

Gọi M là điểm chính giữa của cung nhỏ AB và MN là đường kính.

Do M là điểm chính giữa của cung nhỏ AB nên ta có:

AM=MB

Mà dây MA chắn cung nhỏ AM, dây MB chắn cung nhỏ MB

MA = MB (1)

Ta lại có: OA = OB (2) (cùng bằng bán kính đường tròn tâm O)

Từ (1) và (2) ta suy ra OM là đường trung trực của AB

Hay MN là đường trung trực của AB

Do đó , MN đi qua trung điểm của AB (đcpcm)

Mệnh đề đảo: Đường kính đi qua trung điểm của dây thì đi qua điểm chính giữa của cung căng dây đó.

Chứng minh:

Giả sử đường kính MN đi qua trung điểm H của dây AB

Xét tam giác OAB có:

OA = OB (cùng bằng bán kính đường tròn tâm O)

Do đó, tam giác OAB cân tại O

Có: H là trung điểm của AB

Do đó, OH là đường trung tuyến và cũng là đường phân giác của góc AOB

Tài liệu VietJack

Mà ta có:

Góc AOM chắn cung nhỏ AM

Góc BOM chắn cung nhỏ BM

Tài liệu VietJack

Do đó, M là điểm chính giữa của cung nhỏ AB (đcpcm)

Điều này chỉ đúng khi dây AB không đi qua O

Vậy phải thêm điều kiện để mệnh đề đảo đúng là: Đường kính đi qua trung điểm của một dây không đi qua tâm thì đi qua điểm chính giữa của cung căng dây đó.

b)

Mệnh đề: Đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy.

Giả sử đường kính MN đi qua M là điểm chính giữa cung AB

Vì M là điểm chính giữa cung AB nên ta có:

AM=MB

Mà dây MA chắn cung nhỏ AM, dây MB chắn cung nhỏ MB

MA = MB (1)

Ta lại có: OA = OB (2) (cùng bằng bán kính đường tròn tâm O)

Từ (1) và (2) ta suy ra OM là đường trung trực của AB

Hay MN là đường trung trực của AB

MNAB (đcpcm)

Mệnh đề đảo: Đường kính vuông góc với dây cung thì đi qua điểm chính giữa của cung ấy.

Chứng minh:

Giả sử đường kính MN vuông góc với dây AB tại H

Xét tam giác OAB có:

OA = OB (cùng bằng bán kính đường tròn tâm O)

Do đó, tam giác OAB cân tại O

Có: OH vuông góc với AB tại H (do MN vuông góc với dây AB tại H)

Do đó, OH là đường cao và cũng là đường phân giác

Tài liệu VietJack

Mà ta có:

Góc AOM chắn cung nhỏ AM

Góc BOM chắn cung nhỏ BM

Tài liệu VietJack

Do đó, M là điểm chính giữa của cung nhỏ AB (đcpcm)

*Phương pháp giải:

Sử dụng định lí để chứng minh

*Lý thuyết:

1. Định lí 1

Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:

- Hai cung bằng nhau căng hai dây bằng nhau.

- Hai dây bằng nhau căng hai cung bằng nhau.

Ví dụ 1. Cho đường tròn (O) như hình vẽ.

Lý thuyết Liên hệ giữa cung và dây chi tiết – Toán lớp 9 (ảnh 1)

Trong hình vẽ AB=CD (Lý thuyết Liên hệ giữa cung và dây chi tiết – Toán lớp 9 (ảnh 1)) nên AB = CD.

2. Định lí 2

Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:

- Cung lớn hơn căng dây lớn hơn.

- Dây lớn hơn căng cung lớn hơn.

Ví dụ 2. Cho đường tròn (I) như hình vẽ.

Lý thuyết Liên hệ giữa cung và dây chi tiết – Toán lớp 9 (ảnh 1)

Trong hình vẽ :

Lý thuyết Liên hệ giữa cung và dây chi tiết – Toán lớp 9 (ảnh 1)

3. Bổ sung

Trong một đường tròn:

- Hai cung bị chắn giữa hai dây song song thì bằng nhau.

- Đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy.

- Đường kính đi qua trung điểm của một dây (không đi qua tâm) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.

- Đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.

Xem thêm

Lý thuyết Liên hệ giữa cung và dây (mới 2024 + Bài Tập) - Toán 9

Xem thêm lời giải bài tập Toán lớp 9 hay, chi tiết khác:

Câu hỏi 1 trang 71 Toán 9 Tập 2: Hãy chứng minh định lí:..

Câu hỏi 2 trang 71 Toán 9 Tập 2: Xem hình 11. Hãy viết giả thiết...

Bài tập 10 trang 71 Toán 9 Tập 2: a) Vẽ đường tròn tâm O, bán kính R = 2cm...

Bài tập 11 trang 72 Toán 9 Tập 2: Cho hai đường tròn bằng nhau...

Bài tập 12 trang 72 Toán 9 Tập 2: Cho tam giác ABC. Trên tia đối của tia AB...

Bài tập 13 trang 72 Toán 9 Tập 2: Chứng minh rằng trong một đường...

1 10,157 25/11/2024


Xem thêm các chương trình khác: