Câu hỏi:
12/07/2024 174
Sử dụng công thức tính mức cường độ âm L ở Ví dụ 14, hãy tính mức cường độ âm mà tai người có thể chịu đựng được, biết rằng giá trị cực đại của mức cường độ âm mà tai người có thể chịu đựng được là 130dB.
Sử dụng công thức tính mức cường độ âm L ở Ví dụ 14, hãy tính mức cường độ âm mà tai người có thể chịu đựng được, biết rằng giá trị cực đại của mức cường độ âm mà tai người có thể chịu đựng được là 130dB.
Trả lời:
Ta có công thức tính mức cường độ âm L (đơn vị dB) là
Do giá trị cực đại của mức cường độ âm mà tai người có thể chịu đựng được là 130dB nên ta có L ≤ 130
Vậy cường độ âm mà tai người có thể chịu đựng được là 10 W/m2.
Ta có công thức tính mức cường độ âm L (đơn vị dB) là
Do giá trị cực đại của mức cường độ âm mà tai người có thể chịu đựng được là 130dB nên ta có L ≤ 130
Vậy cường độ âm mà tai người có thể chịu đựng được là 10 W/m2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 5:
a) Vẽ đồ thị hàm số y = log4x và đường thẳng y = 5.
b) Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình log4x = 5.
a) Vẽ đồ thị hàm số y = log4x và đường thẳng y = 5.
b) Nhận xét về số giao điểm của hai đồ thị trên. Từ đó, hãy nêu nhận xét về số nghiệm của phương trình log4x = 5.
Câu 9:
Chỉ số thay đổi pH của một dung dịch được tính theo công thức: pH = – log[H+] (trong đó [H+] chỉ nồng độ ion hydrogen). Đo chỉ số pH của một số mẫu nước sông, ta có kết quả là pH = 6,1.
a) Viết phương trình thể hiện nồng độ x của hydrogen [H+] trong mẫu nước sông đó.
b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lôgarit?
Chỉ số thay đổi pH của một dung dịch được tính theo công thức: pH = – log[H+] (trong đó [H+] chỉ nồng độ ion hydrogen). Đo chỉ số pH của một số mẫu nước sông, ta có kết quả là pH = 6,1.
a) Viết phương trình thể hiện nồng độ x của hydrogen [H+] trong mẫu nước sông đó.
b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lôgarit?
Câu 10:
Một người gửi ngân hàng 100 triệu đồng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất x% / năm (x > 0). Sau 3 năm, người đó rút được cả gốc và lãi là 119,1016 triệu đồng. Tìm x, biết rằng lãi suất không thay đổi qua các năm và người đó không rút tiền ra trong suốt quá trình gửi.
Một người gửi ngân hàng 100 triệu đồng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất x% / năm (x > 0). Sau 3 năm, người đó rút được cả gốc và lãi là 119,1016 triệu đồng. Tìm x, biết rằng lãi suất không thay đổi qua các năm và người đó không rút tiền ra trong suốt quá trình gửi.
Câu 15:
Giải mỗi phương trình sau:
a) 916 – x = 27x + 4
b) 16x – 2 = 0,25 . 2–x + 4
Giải mỗi phương trình sau:
a) 916 – x = 27x + 4
b) 16x – 2 = 0,25 . 2–x + 4