Câu hỏi:
17/11/2024 22,676Số tập con có 3 phần tử của một tập hợp có 7 phần tử là
Trả lời:
Đáp án đúng là B
Lời giải
Mỗi tập con gồm 3 phần tử là một tổ hợp chập 3 của 7 phần tử. Vậy có tập con.
*Phương pháp giải:
Sử dụng định nghĩa:
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.
Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.
*Lý thuyết:
1. Định nghĩa
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.
Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.
Ví dụ: Bạn Mai có 4 chiếc váy màu hồng, màu đỏ, màu trắng, màu tím. Mai muốn chọn 3 trong 4 chiếc váy để mang đi du lịch. Hãy viết các tổ hợp 3 của 4 chiếc áo váy đó.
Hướng dẫn giải
Các tổ hợp chập 3 của 4 chiếc váy là :
Hồng – đỏ – trắng ; Hồng – đỏ – tím ; Đỏ – trắng – tím ; Hồng – trắng – tím.
Vậy ta có 4 tổ hợp chập 3 của 4 chiếc váy là : Hồng – đỏ – trắng ; Hồng – đỏ – tím ; Đỏ – trắng – tím ; Hồng – trắng – tím.
2. Số các tổ hợp
Nhận xét : Một tổ hợp chập k của n phần tử nhiều gấp k! lần số tổ hợp chập k của n phần tử đó.
Kí hiệu là là số tổ hợp chập k của n phần tử với (1 ≤ k ≤ n). Ta có :
Quy ước 0! = 1 ; .
Với những quy ước trên, ta có công thức sau: (với 0 ≤ k ≤ n).
Ví dụ: Một tổ có 8 người, bạn tổ trưởng muốn cử ra 4 bạn đi tập văn nghệ. Hỏi có bao nhiêu cách chọn ?
Hướng dẫn giải
Mỗi cách chọn 4 bạn trong 8 bạn đi trực nhật là một tổ hợp chập 4 của 8.
Ta có .
Vậy có 70 cách chọn 4 trong 8 bạn đi tập văn nghệ.
3. Tính chất của các số
Ta có hai đẳng thức sau : (0 ≤ k ≤ n) và (1 ≤ k < n).
Ví dụ: Ta có : ; .
Xem thêm
Lý thuyết Tổ hợp chi tiết – Toán lớp 10 Cánh diều
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu cách xếp chỗ ngồi cho 4 bạn học sinh vào dãy có 4 ghế?
Câu 2:
Nhãn mỗi chiếc ghế trong một hội trường gồm hai phần : phần đầu là một chữ cái ( trong bảng 24 chữ cái tiếng Việt ), phần thứ hai là một số nguyên dương nhỏ hơn 26. Hỏi có nhiều nhất bao nhiêu chiếc ghế được ghi nhãn khác nhau ?
Câu 3:
Số cách xếp 4 học sinh vào một dãy ghế dài gồm 10 ghế, mỗi ghế chỉ một học sinh ngồi bằng
Câu 4:
Từ các số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có sáu chữ số đôi một khác nhau trong đó các chữ số 1, 2, 3 luôn có mặt và đứng cạnh nhau?
Câu 5:
Cho đa giác đều 2019 đỉnh. Khi đó số tứ giác mà mỗi đỉnh được lấy từ các đỉnh của đa giác đều đã cho và không có cạnh nào là cạnh của đa giác đều đã cho là:
Câu 6:
Có bao nhiêu cách chọn ra một tổ trưởng và một tổ phó từ một tổ có 10 người? Biết khả năng được chọn của mỗi người trong tổ là như nhau.
Câu 7:
Cho tập hợp S = {1;2;3;4;5;6}. Gọi M là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lấy từ S sao cho tổng của các chữ số hàng đơn vị , hàng chục và hàng trăm lớn hơn tổng các chữ số còn lại là 3. Tính tổng của các phần tử của tập hợp M.
Câu 9:
Một chiếc vòng đeo tay gồm 20 hạt giống nhau. Hỏi có bao nhiêu cách cắt chiếc vòng đó thành 2 phần mà số hạt ở mỗi phần đều là số lẻ?
Câu 10:
Cho hai đường thẳng và song song với nhau. Trên đường thẳng cho 5 điểm phân biệt, trên đường thẳng cho 7 điểm phân biệt. Số tam giác có đỉnh là các điểm trong 12 điểm đã cho là:
Câu 11:
Với k, n là hai số nguyên dương tùy ý k n, mệnh đề nào dưới đây đúng?
Câu 12:
Trong mặt phẳng cho tập S gồm 10 điểm trong đó không có 3 điểm nào thẳng hàng. Có bao nhiêu tam giác có 3 đỉnh đều thuộc S?
Câu 13:
Một công việc để hoàng thành bắt buộc phải trải qua hai bước, bước thứ nhất có m cách thực hiện và bước thứ hai có n cách thực hiện. Số cách để hoàn thành công việc đã cho bằng
Câu 14:
Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là