Câu hỏi:

22/11/2024 579

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x2-4x+4, trục tung, trục hoành. Giá trị của k để đường thẳng đi qua A (0; 4) có hệ số góc k chia (H)  thành 2 phần có diện tích bằng nhau là

A. K = -6

Đáp án chính xác

B. K = -2

C. K = -8

D. K = -4

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Lời giải

*Phương pháp giải:

Cho hai hàm số y = f(x)  y = g(x) liên tục trên [a;b]. Khi đó thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi hai đồ thị số y = f(x), y = g(x) và hai đường thẳng x = a; y = b quanh trục Ox là:

V= πab|f2(x)g2(x)|dx

*Lý thuyết:

Khối tròn xoay là một khối hình được tạo bằng cách quay một mặt phẳng quanh một trục cố định. Trong chương trình toán học phổ thông các bạn sẽ được tiếp xúc với một số khối tròn xoay như khối nón tròn xoay, khối trụ tròn xoay, khối cầu tròn xoay,...

2. Công thức tính thể tích khối tròn xoay

* Quay quanh trục Ox:

Hình giới hạn bởi đường cong y = f(x), trục Ox và hai đường thẳng x = a, x = b (trong đó f(x) liên tục trên đoạn [a;b]) quay quanh trục Ox, ta được khối tròn xoay.

Thể tích của khối tròn xoay được tính theo công thức: V=πabfx2dx

Công thức tính thể tích khối tròn xoay đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

Hình giới hạn bởi hai đường cong y = f(x), y = g(x) và hai đường thẳng x = a, x = b (trong đó f(x), g(x) liên tục trên đoạn [a;b]) quay quanh trục Ox.

Thể tích của khối tròn xoay được tính theo công thức: V=πabf2xg2xdx

Công thức tính thể tích khối tròn xoay đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

* Quay quanh trục Oy:

Hình giới hạn bởi đường cong x = f(y), trục Oy và hai đường thẳng y = c; y = d (trong đó f(x) liên tục trên đoạn [c; d]) quay quanh trục Oy, ta được khối tròn xoay.

Thể tích của khối tròn xoay được tính theo công thức: V=πabfy2dy

Xem thêm

Công thức tính thể tích khối tròn xoay (đầy đủ, chính xác nhất) 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi H là hình phẳng giới hạn bởi parabol y=x2 và đường thẳng y = 2x. Tính thể tích V của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành

Xem đáp án » 23/07/2024 616

Câu 2:

Tính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số y=x2-2x và y=-x2+4x

Xem đáp án » 23/07/2024 450

Câu 3:

Cho hình phẳng (H) giới hạn bởi paraboly=ax2+1(a>0), trục tung và đường thẳng x = 1. Quay (H) quanh trục Ox được một khối tròn xoay có thể tích bằng 2815π. Mệnh đề nào dưới đây đúng?

Xem đáp án » 23/07/2024 318

Câu 4:

Diện tích S của hình phẳng giới hạn bởi các đường y=-x2+2x,y=-3,x=1,x=2 được tính bởi công thức nào dưới đây?

Xem đáp án » 22/07/2024 309

Câu 5:

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 1x3 thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và 3x2-2

Xem đáp án » 23/07/2024 284

Câu 6:

Tính thể tích khi S=y=x2-4x+6 ;y=-x2-2x+6 quay quanh trục Ox

Xem đáp án » 23/07/2024 262

Câu 7:

Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a; b] với a < b. Kí hiệu S1 là diện tích hình phẳng giới hạn bởi các đường y = 3f(x), y = 3g(x), x = a, x = b, S2 là diện tích hình phẳng giới hạn bởi các đường y = f(x) − 2, y = g(x) − 2, x = a, x = b. Khẳng định nào sau đây đúng?

Xem đáp án » 23/07/2024 256

Câu 8:

Thể tích của vật tròn xoay có được khi quay hình phẳng giới hạn bởi đồ thị hàm y=tanx, trục Ox, đường thẳng x = 0, đường thẳng x=π3 quanh trục Ox là:

Xem đáp án » 21/07/2024 251

Câu 9:

Cho hàm số y = f(x) liên tục trên R và thỏa mãn f(−1) > 0 > f(0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f(x), y = 0, x = 1 và x = −1. Mệnh đề nào sau đây là đúng?

Xem đáp án » 13/07/2024 243

Câu 10:

Cho hình vuông ABCD tâm O, độ dài cạnh là 4cm. Đường cong BOC là một phần của parabol đỉnh O chia hình vuông thành hai hình phẳng có diện tích lần lượt là S1 và S2 (tham khảo hình vẽ).

Tỉ số S1S2 bằng:

Xem đáp án » 21/07/2024 238

Câu 11:

Cho parabol (P) có đồ thị như hình vẽ:

Tính diện tích giới hạn bởi (P) và trục hoành.

Xem đáp án » 19/07/2024 234

Câu 12:

Ông B có một khu vườn giới hạn bởi đường parabol và một đường thẳng. Nếu đặt trong hệ tọa độ Oxy như hình vẽ bên thì parabol có phương trình y=x2 và đường thẳng là y = 25. Ông B dự định dùng một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua O và điểm M trên parabol để trồng hoa. Hãy giúp ông B xác định điểm M bằng cách tính độ dài OM để diện tích mảnh vường nhỏ bằng 92.

Xem đáp án » 18/07/2024 232

Câu 13:

Cho hàm số y=x4-3x2+m có đồ thị là (Cm) (m là tham số thực). Giả sử (Cm) cắt trục Ox tại 4 điểm phân biệt. Gọi S1, S2 là diện tích của hai hình phẳng nằm dưới trục Ox và S3 là diện tích của hình phẳng nằm trên trục Ox được tạo bởi  (Cm) với trục Ox. Biết rằng tồn tại duy nhất giá trị m=ab (với a, b thuộc N* và tối giản) để S1 + S2 = S3. Giá trị của 2a − b bằng:

Xem đáp án » 23/07/2024 231

Câu 14:

Tính thể tích vật thể có đáy là một hình tròn giới hạn bởi đường tròn có phương trình x2+y2=1 và mỗi thiết diện vuông góc với trục Ox là một hình vuông (tham khảo hình bên)

Xem đáp án » 20/07/2024 224

Câu 15:

Thể tích vật thể nằm giữa hai mặt phẳng x = 0 và x = 2, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0x2 là một nửa đường tròn đường kính  bằng:

Xem đáp án » 22/07/2024 193

Câu hỏi mới nhất

Xem thêm »
Xem thêm »