Câu hỏi:
18/07/2024 166Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:
A. a vuông góc với mặt phẳng (P)
B. a không vuông góc với mặt phẳng (P)
C. a không thể vuông góc với mặt phẳng (P)
D. a có thể vuông góc với mặt phẳng (P)
Trả lời:
Phương án A sai vì có thể có trường hợp a ⊥ b ⊂ (P); a⊥c ⊂ (P); b // c
Phương án B sai vì có thể xảy ra trường hợp a ⊥ b ⊂ (P); a⊥ c ⊂ (P); b ∩ c ≠ ∅, khi đó a⊥(P).
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD, đáy là hình thoi tâm O và SA = SC, SB = SD
Đường thẳng AC vuông góc với mặt phẳng
Câu 3:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa CM với mặt phẳng (BCD) bằng:
Câu 6:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa AC với mặt phẳng (ABD) bằng:
Câu 7:
Cho tứ diện ABCD có AB = AC = AD; góc BAC bằng góc BAD bằng . Gọi M, N là trung điểm của AB và CD.
Đường thẳng CD vuông góc với mặt phẳng
Câu 9:
Cho hình chóp S.ABCD đáy là hình thoi tâm O và SA = SC, SB= SD. Đường thẳng DB không vuông góc với đường thẳng nào sau đây?
Câu 10:
Cho hình chóp S.ABCD đáy là hình thoi tâm O và SA = SC, SB= SD. Đường thẳng BC vuông góc với đường thẳng
Câu 12:
Cho hình tứ diện ABCD có ba cạnh AB, BC, CD đôi một vuông góc.
Đường thẳng AB vuông góc với :
Câu 13:
Cho hình chóp S.ABCD có ABCD là hình vuông và SA ⊥ (ABCD) Tam giác SBC là:
Câu 15:
Cho hình chóp S.ABCD có ABCD là hình vuông và SA ⊥ (ABCD) Tam giác SOD là: