Câu hỏi:
02/11/2024 446Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
d) H và M đối xứng nhau qua BC
Trả lời:
*Lời giải
d) Tam giác ADB vuông tại D có: ∠(A1) + ∠(ABC) = 90o (1)
Tam giác BCF vuông tại F có: ∠(C1) + ∠(ABC) = 90o (2)
Từ (1)và (2) ⇒ ∠(A1) = ∠(C1)
Mặt khác, ta có: ∠() = ∠() ( 2 góc nội tiếp cùng chắn cung BM)
⇒ ∠() = ∠()
⇒ CD là tia phân giác của góc HCM
Xét tam giác HCM có: CD vừa là tia phân giác vừa là đường cao (CD⊥HD)
⇒ Δ HCM cân tại C
⇒ CD cũng là trung tuyến của của HM hay H và M đối xứng với nhau qua D.
*Phương pháp giải
- vận dụng tính chất về góc nội tiếp chắc cung:
+ 2 góc nội tiếp chắn cùng 1 cung sẽ có số đo bằng nhau
*Lý thuyến cần nắm về đường tròn:
1. Định nghĩa góc nội tiếp
- Góc có đỉnh nằm trên đường tròn và hai cạnh là hai dây cung của đường tròn là góc nội tiếp.
Góc có đỉnh A nằm trên đường tròn (O) và AB, AC là hai cạnh của góc cũng là hai dây của đường tròn. Do vậy là góc nội tiếp của đường tròn (O).
2. Định lý
- Trong một đường tròn, số đo góc nội tiếp bằng một nửa số đo cung bị chắn.
3. Hệ quả
Trong một đường tròn
- Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
- Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
- Góc nội tiếp (có số đo nhỏ hơn hoặc bằng ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
- Góc nội tiếp chắn nửa đường tròn là góc vuông.
Các dạng bài tập
Dạng 1: Chứng minh hai góc bằng nhau, đoạn thẳng bằng nhau, tam giác đồng dạng
Dùng hệ quả trong phần tóm tắt lí thuyết để chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau.
Dạng 2: Chứng minh đường thẳng vuông góc, ba điểm thẳng hàng
Sử dụng các định lí, tính chất, hệ quả của góc ở tâm, góc nội tiếp.
Áp dụng quan hệ từ vuông góc đến song song, tiên đề Ơ clit.
Xem thêm các bài viết liên quan hay, chi tiết:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn O và góc nội tiếp ∠BAC = . Số đo độ của cung nhỏ BC bằng:
Câu 2:
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H. Các tứ giác nào sau đây nội tiếp được đường tròn.
Câu 3:
Cho tứ giác ABCD nội tiếp đường tròn (O). Hai cạnh đối AB và CD cắt nhau tại một điểm M ở ngoài (O), biết ∠BAD = thì góc BMC bằng:
Câu 8:
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
b) Bốn điểm B, C, E, F cùng nằm trên một đường tròn
Câu 9:
Phần tự luận
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
a) Tứ giác CEHD nội tiếp
Câu 11:
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
c) AE.AC = AH.AD ; AD.BC = BE.AC