Câu hỏi:
21/07/2024 337Cho hình chóp S. ABCD có đáy là hình thang (AB// CD). Tìm khẳng định sai?
A. Hình chóp có 4 mặt bên.
B. Giao tuyến của mặt phẳng (SAC) và (SBD) là SO. ( O là giao điểm của AC và BD).
C. Giao tuyến của mặt phẳng (SAD) và ( SBC) là SI ( I là giao điểm của AD và BC).
D. Giao tuyến của mặt phẳng (SAB) và (SAD) là đường trung bình của hình thang ABCD
Trả lời:
Chọn D
+Hình chóp S. ABCD có 4 mặt bên là (SAB); (SBC) ; (SCD) và (SAD): Do đó A đúng.
+ Tìm giao tuyến của hai mp( SAC) và (SBD)
S là điểm chung thứ nhất
Gọi O là giao điểm của AC và BD.
là điểm chung thứ hai
=> giao tuyến của ( SAC) và (SBD) là SO.
Do đó B đúng.
+ Tương tự, ta có giao tuyến của mặt phẳng (SAD) và ( SBC) là SI ( I là giao điểm của AD và BC). Do đó C đúng.
+ Giao tuyến của ( SAB) và (SAD) là SA mà SA không phải là đường trung bình của hình thang ABCD.
Do đó D sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD. Hai điểm G; H lần lượt là trọng tâm tam giác SAB và SCD. Gọi O là giao điểm của AC và BD; I là giao điểm của SO và GH. Tìm giao tuyến của: (BGH) và (SAC)
Câu 2:
Cho tứ diện S. ABC. Lấy M thuộc SB; N thuộc AC và I thuộc SC sao cho MI không song song với BC; NI không song song với SA. Gọi K là giao điểm của MI và BC. Tìm giao tuyến của (MNI) với (SAB).
Câu 3:
Cho tứ diện S. ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm giác ABC. Gọi H là giao điểm của EF và AB; J là giao điểm của HG và BC. Tìm giao tuyến của (EFG) và (SGC).
Câu 4:
Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M . Tìm giao tuyến của mặt phẳng (ADM) và (SAC)?
Câu 5:
Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng (GCD) cắt tứ diện theo 1 thiết diện có diện tích là
Câu 6:
Cho tứ diện ABCD ; gọi G là trọng tâm tam giác BCD và M là trung điểm CD; I là điểm ở trên đoạn thẳng AG; BI cắt (ACD) tại J. Chọn khẳng định sai?
Câu 7:
Cho hình chóp S.ABCD. Hai điểm M và G lần lượt là trọng tâm tam giác SAB và SAD; điểm N thuộc SG và P nằm trong tứ giác ABCD. Gọi I; J lần lượt là trung điểm của AB và AD và K là giao điểm của MN và IJ; E là giao điểm của KP và AC; F là giao điểm của IJ và AC. Gọi H là giao điểm của OE và SA; Q là giao điểm của NH và SD. Tìm giao tuyến của (MNP ) và (SCD)
Câu 8:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC; I là giao điểm của Am và ( SBD). Mệnh đề nào sau đây là đúng?
Câu 9:
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M và N lần lượt là trung điểm của AC và BC; P là trọng tâm tam giác BCD. Mặt phẳng (MNP) cắt tứ diện theo 1 thiết diện có diện tích là
Câu 10:
Cho tứ diện ABCD. Gọi E; F; G là điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H . Ba đường nào sau đây đồng quy?
Câu 11:
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M; N; P lần lượt là trung điểm của các cạnh BC; CD và SA. Gọi E là giao điểm của MN và AD; F là giao điểm của MN và AB. Tìm giao tuyến của (MNP) và (SBC)
Câu 12:
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là 2 điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H và K lần lượt là giao điểm của IJ và CD; MH và AC. giao tuyến của 2 mặt phẳng (ACD) và (IJM) là
Câu 13:
Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD)
Câu 14:
Cho hình chóp S.ABCD có đáy không là hình thang. Trên SC lấy điểm M. Gọi N là giao điểm của của SD và ( AMB). Tìm mện đề đúng?
Câu 15:
Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP= 2 PD. Giao điểm của CD và mp (MNP) là giao điểm của: