Câu hỏi:

18/07/2024 325

Cho hình chóp S.ABCD có đáy không là hình thang. Trên SC lấy điểm M. Gọi N là giao điểm của của SD và ( AMB). Tìm mện đề đúng?

A. 3 đường thẳng AB; CD; MN đôi một song song

B. 3 đường thẳng AB; CD; MN đôi một cắt nhau

C. 3 đường thẳng AB; CD; MN đồng quy

Đáp án chính xác

D. 3 đường thẳng AB; CD; MN cùng thuộc 1 mặt phẳng 

Trả lời:

verified Giải bởi Vietjack

Gọi giao điểm của AD và BC là I.

Trong mặt phẳng (SBC) , gọi K là giao điểm của BM và SI. Trong mặt phẳng (SAD) , gọi N là giao điểm AK và SD.

Khi đó N  là giao điểm của đường thẳng SD với mặt phẳng (AMB).

Gọi giao điểm của AB và CD là O. Suy ra

+ O thuộc ( AMB).

+ O thuộc CD mà CDSCD suy ra O thuc ( SCD).

Do đó OAMBSCD (1)

Mà giao tuyến của (AMB) và ( SCD) là MN        (2)

Từ (1) và (2) , suy ra O thuộc MN.

Vậy ba đường thẳng  AB; CD; MN đồng quy.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD. Hai điểm G; H lần lượt là trọng tâm tam giác SAB và SCD. Gọi O là giao điểm của AC và BD; I là giao điểm của SO và GH. Tìm giao tuyến của: (BGH) và (SAC)

Xem đáp án » 30/11/2024 3,782

Câu 2:

Cho tứ diện S. ABC. Lấy M thuộc SB; N thuộc AC và I thuộc SC sao cho MI không song song với BC; NI không song song với SA. Gọi K là giao điểm của MI và BC. Tìm giao tuyến của (MNI) với (SAB).

Xem đáp án » 23/07/2024 1,308

Câu 3:

Cho tứ diện S. ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm giác ABC. Gọi H là giao điểm của EF và AB; J là giao điểm của HG và BC. Tìm giao tuyến của (EFG) và  (SGC).

Xem đáp án » 20/07/2024 1,009

Câu 4:

Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh  SB lấy điểm M . Tìm giao tuyến của  mặt phẳng (ADM) và (SAC)?

Xem đáp án » 23/07/2024 779

Câu 5:

Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng (GCD) cắt tứ diện theo 1 thiết diện có diện tích là

Xem đáp án » 20/07/2024 633

Câu 6:

Cho tứ diện ABCD ; gọi G là trọng tâm tam giác BCD và M là trung điểm CD; I là điểm ở trên đoạn thẳng AG; BI cắt (ACD) tại J. Chọn khẳng định sai?

Xem đáp án » 22/07/2024 596

Câu 7:

Cho hình chóp S.ABCD. Hai điểm M và G lần lượt là trọng tâm tam giác SAB và SAD; điểm N thuộc SG và P nằm trong tứ giác ABCD. Gọi I; J lần lượt là trung điểm của AB và AD và K là giao điểm của MN và IJ; E là giao điểm của KP và AC; F là giao điểm của IJ và AC. Gọi H là giao điểm của OE và SA; Q là giao điểm của NH và SD. Tìm giao tuyến của (MNP ) và (SCD)

Xem đáp án » 18/07/2024 586

Câu 8:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC; I là giao điểm của Am và ( SBD). Mệnh đề nào sau đây là đúng?

Xem đáp án » 19/07/2024 501

Câu 9:

Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M và N lần lượt là trung điểm của AC và BC; P là trọng tâm tam giác BCD. Mặt phẳng (MNP) cắt tứ diện theo 1 thiết diện có diện tích là

Xem đáp án » 20/07/2024 430

Câu 10:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M; N; P lần lượt là trung điểm của các cạnh BC; CD và SA. Gọi E là giao điểm của MN và AD; F là giao điểm của MN và AB. Tìm giao tuyến của (MNP) và (SBC)

Xem đáp án » 18/07/2024 405

Câu 11:

Cho tứ diện ABCD. Gọi E; F; G là điểm lần lượt thuộc các cạnh AB; AC; BD sao cho  EF cắt BC tại I; EG cắt AD tại H . Ba đường nào sau đây đồng quy?

Xem đáp án » 19/07/2024 400

Câu 12:

Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là 2 điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H và K lần lượt là giao điểm của IJ và CD; MH và AC. giao tuyến của 2 mặt phẳng (ACD) và (IJM) là

Xem đáp án » 21/07/2024 370

Câu 13:

Cho tứ diện ABCD và điểm M thuộc AB và N thuộc CD; điểm G nằm trong tam giác BCD. Tìm giao tuyến của (GMN) và (ACD)

Xem đáp án » 20/07/2024 356

Câu 14:

Cho hình chóp S. ABCD có đáy là hình thang (AB// CD). Tìm khẳng định sai?

Xem đáp án » 21/07/2024 351

Câu 15:

Cho tứ diện ABCD có E và F lần lượt là trung điểm của AB và CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mp (ACD) là

Xem đáp án » 22/07/2024 307

Câu hỏi mới nhất

Xem thêm »
Xem thêm »