Câu hỏi:
20/07/2024 84Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích bằng V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S.AMP. Giá trị nhỏ nhất của tỉ số bằng
A. 1/3
B. 1/8
C. 2/3
D. 3/8
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y=f(x) xác định và có đạo hàm trên R. Đồ thị hàm số f’(x) được cho như hình vẽ bên. Hỏi hàm số f(x) có bao nhiêu điểm cực đại?
Câu 2:
Cho hàm số y=f(x) xác định và liên tục trên R, có đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Hàm số g(x)=f(x) – 1/2 x2+ x-8 có bao nhiêu điểm cực tiểu?
Câu 3:
Cho hàm số y=x4-2mx2+7/2 có đồ thị (C). Biết rằng (C) có ba điểm cực trị lập thành tam giác nhận gốc tọa độ O(0;0) làm trực tâm. Khẳng định nào sau đây là đúng?
Câu 4:
Biết đồ thị hàm số bậc bốn y=f(x) được cho bởi hình vẽ bên dưới. Tìm số giao điểm của đồ thị hàm số y=g(x)= [f’(x)]2 – f(x). f’’(x) và trục hoành
Câu 5:
Tính tổng hoành độ các giao điểm của đồ thị hàm số và đường thẳng y=-x
Câu 6:
Cho hình phẳng (H) được giới hạn bởi elip có phương trình Tính thể tích của khối tròn xoay thu được khi quay hình phẳng (H) quanh trục Ox
Câu 8:
Trong không gian tọa độ Oxyz cho hình hộp ABCD.A’B’C’D’ với các điểm A(-1;1;2), B(-3;2;1), D(0;-1;2) và A(2;1;2). Tìm tọa độ đỉnh C’
Câu 10:
Tìm tổng các giá trị nguyên của tham số m để hàm số y=mx4+ (m2-25)x2+2 có một điểm cực đại và hai điểm cực tiểu.
Câu 12:
Cho hình lăng trụ tam giác đều ABC. A’B’C’ có tất cả các cạnh đều bằng a. Gọi M,N lần lượt là trung điểm của A’B’ và AA’. Tính khoảng cách từ điểm M đến mặt phẳng (NBC) theo a.
Câu 14:
Cho hàm số y=f(x) xác định và liên tục trên sao cho x2+ x.f(ex) + f(ex)=1 với mọi . Tính tích phân
Câu 15:
Cho tứ diện ABCD có AB=AC=AD=2a. Biết tam giác BCD có BC=2a, BD=a, . Tính thể tích tứ diện ABCD theo a