Câu hỏi:
22/07/2024 73Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là một điểm nằm trên đoạn thẳng BC. Mặt phẳng (SAB) tạo với (SBC) một góc và mặt phẳng (SAC) tạo với (SBC) một góc thỏa mãn . Gọi là góc tạo bởi SA và mặt phẳng (ABC). Tính
A.
B.
C.
D.
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phương trình . Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thỏa mãn
Câu 2:
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây.
Hỏi hàm số đó là hàm số nào?
Câu 3:
Cho mặt phẳng (Q): x - y + 2z - 2 = 0. Viết phương trình mặt phẳng (P) song song với mặt phẳng (Q), đồng thời cắt các trục Ox, Oy lần lượt tại các điểm M, N sao cho .
Câu 4:
Cho hàm số y = f(x) liên tục trên R và có bảng xét dấu của đạo hàm như sau
Có bao nhiêu giá trị nguyên của tham số m để hàm số g (x) = f (x + m) đồng biến trên khoảng (0; 2).
Câu 5:
Cho hình nón đỉnh S có đáy là đường tròn tâm O, bán kính R. Trên đường tròn (O) lấy hai điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng , thể tích hình nón đã cho bằng
Câu 6:
Cho hàm số y = f(x) liên tục trên R và có bảng xét dấu của đạo hàm như sau
Có bao nhiêu giá trị nguyên của tham số m để hàm số g (x) = f (x + m) đồng biến trên khoảng (0; 2).
Câu 8:
Cho các đường thẳng và . Viết phương trình đường thẳng đi qua A (1; 0; 2), cắt và vuông góc với .
Câu 9:
Cho hàm số y = f (x) có đồ thị (C), biết tiếp tuyến của đồ thị (C) tại điểm có hoành độ
x = 0 là đường thẳng y = 3x - 3. Giá trị của
Câu 10:
Cho hàm số (với m là tham số). Có bao nhiêu giá trị của tham số m để các điểm cực trị của đồ thị hàm số đều nằm trên các trục tọa độ?
Câu 12:
Phương trình có hai nghiệm là a và (với a,b Î N* và là phân số tối giản). Giá trị của b là
Câu 13:
Trong hệ tọa độ Oxyz, cho đường thẳng . Phương trình nào sau đây là phương trình tham số của d?
Câu 15:
Viết phương trình mặt phẳng (P) đi qua điểm A (0; -1; 2), song song với trục Ox và vuông góc với mặt phẳng (Q) : x + 2y - 2z +1 = 0.