Câu hỏi:
14/07/2024 131Cho hàm số y = f(x) xác định, liên tục trên [-1; 1] và có bảng biến thiên như sau
Trong các khẳng định sau, khẳng định nào đúng?
A. Hàm số có giá trị lớn nhất bằng 0
B. Hàm số có đúng một cực trị
C. Hàm số đạt cực đại tại x = 1
D. Hàm số có giá trị cực tiểu bằng 1.
Trả lời:
Đáp án B
A sai do hàm số có giá trị lớn nhất bằng 1.
C, D sai do hàm số đạt cực đại tại x = 0 và giá trị cực đại y = 1
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M( 1; 2;3) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho đạt giá trị nhỏ nhất có dạng (P): x + ay + bz + c = 0 . Tính S = a + b + c
Câu 2:
Cho hình hộp ABCD.A’B’C’D’. Gọi M là điểm trên cạnh AC sao cho AC = 3MC. Lấy N trên cạnh C’D sao cho C’N = xC’D) . Với giá trị nào của x thì MN // BD’.
Câu 3:
Trong không gian Oxyz, cho mặt phẳng (P) :x - 2y – 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương là
Câu 4:
Bán kính đáy của khối trụ tròn xoay có thể tích bằng V và chiều cao bằng h là
Câu 5:
Gọi n là số các số phức z đồng thời thỏa mãn và biểu thức đạt giá trị lớn nhất. Gọi M là giá trị lớn nhất của T. Giá trị tích của M.n là
Câu 6:
Cho tam giác ABC có BC = a, . Trên đường thẳng vuông góc với (ABC) tại A lấy điểm S thỏa mãn SA = . Hình chiếu vuông góc của A trên SB , SC lần lượt là M , N . Góc giữa hai mặt phẳng (ABC) và (AMN) là?
Câu 7:
Một gia đình cần khoan một cái giếng để lấy nước. Họ thuê một đội khoan giếng nước. Biết giá của mét khoan đầu tiên là 80.000 đồng, kể từ mét khoan thứ hai giá của mỗi mét khoan tăng thêm 5.000 đồng so với giá của mét khoan trước đó. Biết cần phải khoan sâu xuống 50m mới có nước. Hỏi phải trả bao nhiêu tiền để khoan cái giếng đó?
Câu 9:
Chị Trang gửi 100 triệu đồng vào tài khoản ngân hàng theo hình thức lãi kép với lãi suất 8% /năm. số tiền lãi thu được sau 10 năm gần nhất với số nào sau đây (biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất ngân hàng không đổi)?
Câu 10:
Trong không gian Oxyz, cho điểm H(2;1;1). Viết phương trình mặt phẳng qua H và cắt các trục Ox , Oy , Oz lần lượt tại A, B , C sao cho H là trực tâm tam giác ABC
Câu 11:
Trong mặt phẳng phức gọi M là điểm biểu diễn cho số phức z = a + bi (a, b Î R, ab ¹ 0 ), M' là điểm biểu diễn cho số phức . Mệnh đề nào sau đây đúng?
Câu 12:
Hàm số y = f(x) có đạo hàm trên R \ {-2; 2}, có bảng biến thiên như sau:
Gọi k, l lần lượt là số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số . Tính k+l
Câu 13:
Cho hàm số . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5; 5] để giá trị nhỏ nhất của y nhỏ hơn -1
Câu 14:
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = a, góc giữa AC’ và (ABC) bằng . Tính thể tích V của khối trụ nội tiếp hình lăng trụ ABC.A’B’C’.
Câu 15:
Cho lăng trụ đều ABC.EFH có tất cả các cạnh bằng a . Gọi S là điểm đối xứng của A qua BH . Thể tích khối đa diện ABCSFH bằng