Câu hỏi:
17/07/2024 181Cho hàm số . Tìm tất cá các giá trị thực của tham số m để hàm số có 5 cực trị.
A.
B.
C.
D.
Trả lời:
Chọn D.
Phương pháp:
Sử dụng tính chất đồ thị hàm đa thức bậc ba luôn cắt trục tung và đồ hàm số y=f(|x|) luôn nhận trục tung làm trục đối xứng để suy ra x=0 luôn là một cực trị của hàm y=f(|x|)
Lập luận để suy ra hàm f(x) có hai điểm cực trị dương phân biệt thì hàm số y=f(|x|) có 5 điểm cực trị
phân biệt.
Cách giải:
Nhận thấy rằng nếu là điểm cực trị của hàm số y=f(|x|) cũng là điểm cực trị của hàm số y=f(|x|) (1)
Lại thấy vì đồ thị hàm số y=f(|x|) nhận trục Oy làm trục đối xứng mà f(x) là hàm đa thứ bậc ba nên x=0 luôn là một điểm cực trị của hàm số y=f(|x|) (2)
Từ (1) và (2) suy ra để hàm số y=f(|x|) có 5 điểm cực trị thì hàm số
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có bảng xét dấu của đạo hàm như sau:
Hàm số nghịch biến trên khoảng nào dưới đây?
Câu 2:
Cho hai vị trí A, B cách nhau 615m, cùng nằm về một phía bờ song như hình vẽ. Khoảng cách từ A và từ B đến bờ song lần lượt là 118m và 487m. Một người đi từ A đến bờ song lấy nước mang về B. Tính đoạn đường ngắn nhất mà người ấy có thể đi.
Câu 9:
Cho tập hợp X gồm các số tự nhiên có 6 chữ số khác nhau có dạng . Từ tập X lấy ngẫu nhiên một số. Tính xác suất để số lấy ra là số lẻ và thõa mãn .
Câu 11:
Tìm tất cả các giá trị của tham số m để phương trình có ba nghiệm phân biệt.
Câu 12:
Cho hàm số có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số.
Câu 13:
Cho hình chóp S.ABC có SA vuông góc với đáy ABC. Tam giác ABC vuông cân tại B và . Tính góc giữa SC và mặt phẳng (ABC).