Câu hỏi:
22/07/2024 129
Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).
Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).
Trả lời:
Chú ý: Phép vị tự biến đường tròn có bán kính R thành đường tròn có bán kính R' = |k|R và có tâm là ảnh của tâm.
Hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A và đường tròn tâm O2 có bán kính gấp 2 lần đường tròn tâm O1.
- Trên đường tròn (O1; R) lấy điểm B bất kì.
- Trên đường tròn (O2; 2R) dựng đường kính CD // O1B.
- BC cắt O1O2 tại E.
+) Ta có: O1B // CO2 nên theo định lí Thales có .
Suy ra nên ta có phép vị tự tâm E, tỉ số 2 biến điểm O1 thành điểm O2.
Như vậy, phép vị tự tâm E, tỉ số 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).
+) Nối B với D, ta chứng minh được BD cắt O1O2 tại điểm tiếp xúc A của hai đường tròn.
Ta có: và A nằm giữa hai điểm O1 và O2 nên . Do đó, ta có phép vị tự tâm A, tỉ số – 2 biến điểm O1 thành điểm O2.
Như vậy, phép vị tự tâm A, tỉ số – 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).
Vậy có 2 phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).
Chú ý: Phép vị tự biến đường tròn có bán kính R thành đường tròn có bán kính R' = |k|R và có tâm là ảnh của tâm.
Hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A và đường tròn tâm O2 có bán kính gấp 2 lần đường tròn tâm O1.
- Trên đường tròn (O1; R) lấy điểm B bất kì.
- Trên đường tròn (O2; 2R) dựng đường kính CD // O1B.
- BC cắt O1O2 tại E.
+) Ta có: O1B // CO2 nên theo định lí Thales có .
Suy ra nên ta có phép vị tự tâm E, tỉ số 2 biến điểm O1 thành điểm O2.
Như vậy, phép vị tự tâm E, tỉ số 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).
+) Nối B với D, ta chứng minh được BD cắt O1O2 tại điểm tiếp xúc A của hai đường tròn.
Ta có: và A nằm giữa hai điểm O1 và O2 nên . Do đó, ta có phép vị tự tâm A, tỉ số – 2 biến điểm O1 thành điểm O2.
Như vậy, phép vị tự tâm A, tỉ số – 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).
Vậy có 2 phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong Ví dụ 8, chứng minh rằng hai hình OMGE và COEN đồng dạng với nhau.
Trong Ví dụ 8, chứng minh rằng hai hình OMGE và COEN đồng dạng với nhau.
Câu 2:
Chứng minh rằng nếu phép đồng dạng F biến tam giác ABC thành tam giác A'B'C' thì F biến trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC thành trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác A'B'C'.
Chứng minh rằng nếu phép đồng dạng F biến tam giác ABC thành tam giác A'B'C' thì F biến trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC thành trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác A'B'C'.
Câu 3:
Trong Hình 53, cho đoạn thẳng AB. Nêu cách dựng:
a) Đoạn thẳng A1B1 là ảnh của đoạn thẳng AB qua phép vị tự tâm O tỉ số ;
b) Đoạn thẳng A2B2 là ảnh của đoạn thẳng A1B1 qua phép quay tâm O với góc quay φ = – 60°.
c) Nhận xét về mối liên hệ giữa độ dài các đoạn thẳng AB, A2B2.
Trong Hình 53, cho đoạn thẳng AB. Nêu cách dựng:
a) Đoạn thẳng A1B1 là ảnh của đoạn thẳng AB qua phép vị tự tâm O tỉ số ;
b) Đoạn thẳng A2B2 là ảnh của đoạn thẳng A1B1 qua phép quay tâm O với góc quay φ = – 60°.
c) Nhận xét về mối liên hệ giữa độ dài các đoạn thẳng AB, A2B2.
Câu 4:
Hình 59 mô tả một viên gạch trang trí hình tam giác đều. Chứng minh rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.
Hình 59 mô tả một viên gạch trang trí hình tam giác đều. Chứng minh rằng hình hoa ba cánh màu xanh và hình hoa ba cánh màu đỏ đồng dạng với nhau.
Câu 5:
Phép biến hình nào trong các phép biến hình dưới đây không là phép đồng dạng?
a) Phép đối xứng trục;
b) Phép đồng nhất;
c) Phép vị tự tỉ số k = 1;
d) Phép biến hình biến mỗi điểm trong mặt phẳng thành điểm A cho trước.
Phép biến hình nào trong các phép biến hình dưới đây không là phép đồng dạng?
a) Phép đối xứng trục;
b) Phép đồng nhất;
c) Phép vị tự tỉ số k = 1;
d) Phép biến hình biến mỗi điểm trong mặt phẳng thành điểm A cho trước.
Câu 6:
Trên bản đồ bay với tỉ lệ xích 1: 10 000 000, khoảng cách giữa Hà Nội và Tokyo đo được là 37,34 cm. Khoảng cách thực tế (tính theo đường chim bay) giữa Hà Nội và Tokyo là bao nhiêu kilômét?
Trên bản đồ bay với tỉ lệ xích 1: 10 000 000, khoảng cách giữa Hà Nội và Tokyo đo được là 37,34 cm. Khoảng cách thực tế (tính theo đường chim bay) giữa Hà Nội và Tokyo là bao nhiêu kilômét?
Câu 7:
Chứng minh rằng qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.
Chứng minh rằng qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.
Câu 8:
Khẳng định nào dưới đây là đúng?
a) Hai tam giác luôn đồng dạng với nhau;
b) Hai hình chữ nhật luôn đồng dạng với nhau;
c) Hai hình thoi luôn đồng dạng với nhau;
d) Hai hình vuông luôn đồng dạng với nhau.
Khẳng định nào dưới đây là đúng?
a) Hai tam giác luôn đồng dạng với nhau;
b) Hai hình chữ nhật luôn đồng dạng với nhau;
c) Hai hình thoi luôn đồng dạng với nhau;
d) Hai hình vuông luôn đồng dạng với nhau.
Câu 9:
Cho đường tròn (C) có tâm O bán kính R. Xác định ảnh của đường tròn (C) qua phép vị tự tâm O tỉ số .
Cho đường tròn (C) có tâm O bán kính R. Xác định ảnh của đường tròn (C) qua phép vị tự tâm O tỉ số .
Câu 10:
Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.
Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.
Câu 11:
Cho tam giác nhọn ABC có trực tâm H. Xác định ảnh của tam giác ABC qua phép vị tự tâm H tỉ số k = .
Cho tam giác nhọn ABC có trực tâm H. Xác định ảnh của tam giác ABC qua phép vị tự tâm H tỉ số k = .
Câu 12:
Cho tam giác ABC có O là trung điểm của cạnh BC. Xác định ảnh của tam giác ABC trong phép vị tự tâm O tỉ số .
Cho tam giác ABC có O là trung điểm của cạnh BC. Xác định ảnh của tam giác ABC trong phép vị tự tâm O tỉ số .
Câu 13:
Người ta dùng một kính hiển vi có khả năng phóng to vật lên gấp 100 000 lần để quan sát một virus và đo được kích thước của virus là 2 mm. Hỏi kích thước thật của virus là bao nhiêu micromét (μm)?
Biết 1 mm = 1 000 μm.
Người ta dùng một kính hiển vi có khả năng phóng to vật lên gấp 100 000 lần để quan sát một virus và đo được kích thước của virus là 2 mm. Hỏi kích thước thật của virus là bao nhiêu micromét (μm)?
Biết 1 mm = 1 000 μm.
Câu 14:
Cho phép vị tự tâm O tỉ số k và ba điểm A, B, C thẳng hàng sao cho B nằm giữa A và C. Giả sử A' = V(O, k)(A), B' = V(O, k)(B), C' = V(O, k)(C).
a) Biểu diễn các vectơ lần lượt theo các vectơ .
b) Hai vectơ và có ngược hướng không?
c) Hai vectơ và có ngược hướng không? Từ đó, nêu mối quan hệ giữa ba điểm A', B', C'.
Cho phép vị tự tâm O tỉ số k và ba điểm A, B, C thẳng hàng sao cho B nằm giữa A và C. Giả sử A' = V(O, k)(A), B' = V(O, k)(B), C' = V(O, k)(C).
a) Biểu diễn các vectơ lần lượt theo các vectơ .
b) Hai vectơ và có ngược hướng không?
c) Hai vectơ và có ngược hướng không? Từ đó, nêu mối quan hệ giữa ba điểm A', B', C'.
Câu 15:
Trong mặt phẳng cho điểm O. Với mỗi điểm M trong mặt phẳng, hãy xác định điểm M' sao cho (Hình 47).
Trong mặt phẳng cho điểm O. Với mỗi điểm M trong mặt phẳng, hãy xác định điểm M' sao cho (Hình 47).