Câu hỏi:
18/07/2024 159Câu nào sau đây đúng?
A. Nếu ba điểm cùng thuộc hai mặt phẳng thì chúng thẳng hàng
B. Nếu hai mặt phẳng có một điểm chung thì chúng cắt nhau theo giao tuyến đi qua điểm chung ấy.
C. Nếu hai đường thẳng không có điểm chung thì chúng không cùng nằm trông một mặt phẳng
D. Nếu hai đường thẳng phân biệt có một điểm chung thì chúng cùng nằm trong một mặt phẳng.
Trả lời:
Có thể sửa lại các câu sau thành các câu đúng như sau:
A. Nếu ba điểm cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng
B. Hai mặt phẳng phân biệt có một điểm chung thì chúng cắt nhau theo giao tuyến đi qua điểm chung ấy
C. Nếu hai đường thẳng không có điểm chung thì chưa kết luận được chúng không cùng nằm trong một mặt phẳng
D. Nếu hai đường thẳng có một điểm chung thì chúng cùng nằm trong một mặt phẳng
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC, P là điểm thuộc DB sao cho PB = 2PD. Gọi Q là giao điểm của CD với mặt phẳng (MNP). Giao tuyến của hai mặt phẳng (MNP) và (ACD) là:
Câu 2:
Cho tứ diện ABCD. Gọi E, F, G lần lượt là ba điểm trên các cạnh AB, AC, BD sao cho EF cắt BC tại M, EG cắt AD tại N. tìm mệnh đề sai trong các mệnh đề sau đây?
Câu 3:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E, F lần lượt là trung điểm của AB và SC; I, J lần lượt là giao điểm của AF và EF với mặt phẳng (SBD). Tỉ số EJ/IF bằng
Câu 4:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC, P là điểm thuộc DB sao cho PB = 2PD. Gọi Q là giao điểm của CD với mặt phẳng (MNP). Đường thẳng MP không chéo với đường thẳng nào sau đây?
Câu 5:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E, F lần lượt là trung điểm của AB và SC; I, J lần lượt là giao điểm của AF và EF với mặt phẳng (SBD). Tỉ số IJ/JB bằng:
Câu 6:
Cho hình tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, BC, CD. Thiết diện của tứ diện đi qua ba điểm M, N, P là:
Câu 7:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC, P là điểm thuộc DB sao cho PB = 2PD. Gọi Q là giao điểm của CD với mặt phẳng (MNP). Tỉ số QD/QC bằng:
Câu 8:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi E, F lần lượt là trung điểm của AB và SC; I, J lần lượt là giao điểm của AF và EF với mặt phẳng (SBD). Tỉ số IA/IF bằng:
Câu 9:
Cho hình lăng trụ ABC.A’B’C’ đáy là tam giác đều tâm O, C’O vuông góc với (ABC). Khoảng cách từ O tới đường thẳng CC’ bằng a. Góc tạo bởi mặt phẳng (AA’C’C) và mp(BB’C’C) bằng . Gọi góc giữa cạnh bên và đáy của lẳng trụ là φ thì.
Câu 10:
Cho hình chóp tứ giác đều S.ABCD cạnh đáy bằng cạnh bên bằng a. Khoảng cách từ AD tới (SBC) bằng:
Câu 12:
Cho hình chóp S.ABCD, các cặp đường thẳng nào sau đây chéo nhau?
Câu 13:
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là .
Tìm câu đúng nhất.
Thiết diện của hình tứ diện cắt bởi mặt phẳng () là:
Câu 15:
Cho hình chóp S.ABCD đáy là hình vuông ABCD cạnh bằng a, cạnh bên hình chóp cũng bằng a. gọi I là trung điểm của SA. Mặt phẳng (IBC) cắt hình chóp theo thiết diện CBIJ. Chu vi thiết diện CBIJ bằng: