Tìm đường đi ngắn nhất từ đỉnh M đến N trong đồ thị có trọng số sau

Lời giải Bài 10 trang 68 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 252 03/07/2023


Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài tập cuối chuyên đề 2

Bài 10 trang 68 Chuyên đề Toán 11: Tìm đường đi ngắn nhất từ đỉnh M đến N trong đồ thị có trọng số sau:

Bài 10 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lời giải:

Bài 10 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo

– Gán nhãn cho M bằng 0 (tức là, nM = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh M.

– Tại các đỉnh kề với M, gồm A, B, C, ta có:

⦁ nA = nM + wMA = 0 + 3 = 3.Vì 3 < ∞ nên ta đổi nhãn của A thành 3.

⦁ nB = nM + wMB = 0 + 4 = 4.Vì 4 < ∞ nên ta đổi nhãn của B thành 4.

⦁ nC = nM + wMC = 0 + 5 = 5.Vì 5 < ∞ nên ta đổi nhãn của C thành 5.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là A nên ta khoanh tròn đỉnh A (đỉnh gần M nhất, chỉ tính các điểm khác M).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với A gồm D, E, ta có:

⦁ nD = nA + wAD = 3 + 8 = 11.Vì 11 < ∞ nên ta đổi nhãn của D thành 11.

⦁ nE = nA + wAE = 3 + 10 = 13.Vì 13 < ∞ nên ta đổi nhãn của E thành 13.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần M thứ hai).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với B gồm D, F, ta có:

⦁ nD = nB + wBD = 4 + 8 = 12.Vì 12 > 11 (11 là nhãn hiện tại của D) nên ta giữ nguyên nhãn của D là 11.

⦁ nF = nB + wBF = 4 + 6 = 10.Vì 10 < ∞ nên ta đổi nhãn của F thành 10.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C nên ta khoanh tròn đỉnh C (đỉnh gần M thứ ba).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với C gồm E, F, ta có:

⦁ nE = nC + wCE = 5 + 6 = 11.Vì 11 < 13 (13 là nhãn hiện tại của E) nên ta đổi nhãn của E thành 11.

⦁ nF = nC + wCF = 5 + 8 = 13.Vì 13 > 10 (10 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 10.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần M thứ tư).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với F chỉ có N, ta có:

nN = nF + wFN = 10 + 12 = 22.Vì 22 < ∞ nên ta đổi nhãn của N thành 22.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D, E nên ta tùy ý khoanh tròn đỉnh E (đỉnh gần M thứ năm).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với E chỉ có N, ta có:

nN = nE + wEN = 11 + 7 = 18.Vì 18 < 22 (22 là nhãn hiện tại của N) nên ta đổi nhãn của N thành 18.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D nên ta tùy ý khoanh tròn đỉnh D (đỉnh gần M thứ sáu).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với D chỉ còn N, ta có:

nN = nD + wDN = 11 + 9 = 20.Vì 20 > 18 (18 là nhãn hiện tại của N) nên ta giữ nguyên nhãn của N là 18.

Lúc này, ta thấy chỉ còn đỉnh N chưa được khoanh tròn nên ta khoanh tròn đỉnh N (đỉnh gần M thứ bảy).

– Nhìn lại các bước trên, ta thấy:

nN = 18 = nE + wEN = nC + wCE + wEN = nM + wMC + wCE + wEN

= wMC + wCE + wEN = lMCEN.

Vậy MCEN là đường đi ngắn nhất từ đỉnh M đến N, với độ dài bằng 18.

 

1 252 03/07/2023


Xem thêm các chương trình khác: