Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10(có đáp án): Tổng hợp câu hay và khó chương I

Trắc nghiệm Toán 10(có đáp án): Tổng hợp câu hay và khó chương I

Trắc nghiệm Toán 10(có đáp án): Tổng hợp câu hay và khó chương I

  • 248 lượt thi

  • 12 câu hỏi

  • 20 phút

Danh sách câu hỏi

Câu 1:

20/07/2024

Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hóa, 6 học sinh giỏi cả Toán và Lý, 5 học sinh giỏi cả Hóa và Lý, 4 học sinh giỏi cả Toán và Hóa, 3 học sinh giỏi cả ba môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một trong ba môn (Toán, Lý, Hóa) của lớp 10A là:

Xem đáp án

Đáp án A

Theo giả thiết đề bài cho, ta có biểu đồ Ven:

 

Dựa vào biểu đồ Ven ta thấy:

Số học sinh chỉ giỏi Toán và Lý (không giỏi Hóa) là: 6−3=3 (em)

Số học sinh chỉ giỏi Toán và Hóa (không giỏi Lý) là: 4−3=1 (em)

Số học sinh chỉ giỏi Lý và Hóa (không giỏi Toán) là: 5−3=2 (em)

Số học sinh chỉ giỏi một môn Toán là: 10−3−3−1=3 (em)

Số học sinh chỉ giỏi một môn Lý là: 10−3−3−2=2 (em)

Số học sinh chỉ giỏi một môn Hóa là: 11−1−3−2=5 (em)

Số học sinh giỏi ít nhất một trong ba môn là:

3+2+5+1+2+3+3=19 (em)


Câu 4:

20/07/2024

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án

Đáp án B


Câu 6:

21/07/2024

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án

Đáp án D


Câu 8:

23/07/2024

Xác định số phần tử của tập hợp

X={nN|n4,n<2017}

Xem đáp án

Đáp án A

Các số tự nhiên chia hết cho 4 nhỏ hơn 2017 là 0;4;8;...;2016

Số phần tử của tập hợp X là: (2016−0):4+1 = 505 (số)

Vậy có tất cả 505 số tự nhiên nhỏ hơn 2017 và chia hết cho 4.


Câu 11:

13/10/2024

Lớp 10A có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hoá, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hoá, 2 học sinh giỏi cả Lý và Hoá, 1 học sinh giỏi cả ba môn Toán, Lý, Hoá. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hoá ) của lớp 10A là:

Xem đáp án

Đáp án đúng: C

*Phương pháp giải

- vẽ biểu đồ Ven ra để nhìn cho rõ những số học sinh giỏi cả 2 môn và 3 môn

- Từ đó để tính được số học sinh giỏi chỉ 2 môn. TT để tìm ra số học sinh chỉ giỏi ít nhất 1 trong 3 môn

*Lời giải

Dựa vào biểu đồ Ven ta thấy:

Số học sinh giỏi toán, lý mà không giỏi hóa: 3−1=2.

Số học sinh giỏi toán, hóa mà không giỏi lý: 4−1=3.

Số học sinh giỏi hóa, lý mà không giỏi toán: 2−1=1.

Số học sinh chỉ giỏi môn lý: 5−2−1−1=1.

Số học sinh chỉ giỏi môn hóa: 6−3−1−1=1.

Số học sinh chỉ giỏi môn toán: 7−3−2−1=1.

Số học sinh giỏi ít nhất một (môn toán, lý, hóa) là số học sinh giỏi 1 môn hoặc 2 môn hoặc cả 3 môn: 1+1+1+1+2+3+1=10.

* Phương pháp giải toán sử dụng biểu đồ Ven:

+ Bước 1: Chuyển bài toán về ngôn ngữ tập hợp.

+ Bước 2: Sử dụng sơ đồ Ven để minh họa các tập hợp.

Vẽ các vòng kín đại diện các tập hợp (mỗi vòng kín là một tập hợp), lưu ý hai vòng kín có phần chung nếu mỗi vòng kín có ít nhất một phần nằm trong vòng kín kia và hai tập hợp đó khác rỗng.

+ Bước 3: Dựa vào sơ đồ Ven ta thiết lập được đẳng thức hoặc phương trình, hệ phương trình, từ đó tìm được kết quả bài toán.

Lưu ý:

+ Nếu A và B là hai tập hợp hữu hạn thì n(A ∪ B) = n(A) + n(B) – n(A ∩ B).

⇒ n(A ∩ B) = n(A) + n(B) – n(A ∪ B).

+ Nếu A và B không có phần tử chung, tức là A ∩ B = ∅, thì n(A ∪ B) = n(A) + n(B).

Xem thêm các bài viết liên quan hay chi tiết:

Lý thuyết Tập hợp và các phép toán trên tập hợp - Toán 10 Kết nối tri thức

Giải SBT Toán 10 Bài 2. Tập hợp và các phép toán trên tập hợp có đáp án

Các phép toán trên tập hợp và cách giải bài tập hay nhất 

 

 


Câu 12:

20/07/2024

Cho A ={x R ||mx3| = mx3}, B = {x  R |x24 = 0}. Tìm m để B∖A=B

Xem đáp án

Đáp án C


Bắt đầu thi ngay