Trắc nghiệm Toán 10 CTST Bài 2. Giải phương trình bậc hai một ẩn (Phần 2) có đáp án
Trắc nghiệm Toán 10 CTST Bài 2. Giải phương trình bậc hai một ẩn (Thông hiểu) có đáp án
-
463 lượt thi
-
8 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
13/07/2024Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai f(x) = –x2 – 4x + 5 có ∆’ = (–2)2 – (–1).5 = 9 > 0.
Suy ra f(x) có hai nghiệm phân biệt là:
Ta lại có a = –1 < 0.
Do đó ta có:
⦁ f(x) âm trên hai khoảng (–∞; –5) và (1; +∞);
⦁ f(x) dương trên khoảng (–5; 1);
⦁ f(x) = 0 khi x = –5 hoặc x = 1.
Vì vậy bất phương trình f(x) ≥ 0 có tập nghiệm là [–5; 1].
Trên đoạn [–5; 1], ta thấy có 7 giá trị nguyên là: –5; –4; –3; –2; –1; 0; 1.
Vậy ta chọn phương án B.
Câu 2:
22/07/2024Tập nghiệm của bất phương trình x2 – 3x + 2 < 0 là:
Hướng dẫn giải
Đáp án đúng là: A
Tam thức bậc hai f(x) = x2 – 3x + 2 có ∆ = (–3)2 – 4.1.2 = 1 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
Ta lại có a = 1 > 0.
Do đó ta có:
⦁ f(x) âm trên khoảng (1; 2);
⦁ f(x) dương trên hai khoảng (–∞; 1) và (2; +∞);
⦁ f(x) = 0 khi x = 1 hoặc x = 2.
Vì vậy bất phương trình x2 – 3x + 2 < 0 có tập nghiệm là (1; 2).
Ta chọn phương án A.
Câu 3:
23/07/2024Tập nghiệm của bất phương trình x2 + 9 > 6x là:
Hướng dẫn giải
Đáp án đúng là: B
Ta có x2 + 9 > 6x.
⇔ x2 – 6x + 9 > 0.
Tam thức bậc hai f(x) = x2 – 6x + 9 có ∆’ = (–3)2 – 1.9 = 0.
Suy ra f(x) có nghiệm kép x = 3.
Ta lại có a = 1 > 0.
Do đó ta có:
⦁ f(x) dương trên hai khoảng (–∞; 3) và (3; +∞);
⦁ f(x) = 0 khi x = 3.
Vì vậy bất phương trình x2 – 6x + 9 > 0 có tập nghiệm là (–∞; 3) ∪ (3; +∞) (hoặc ta có thể viết: ℝ \ {3}).
Ta chọn phương án B.
Câu 4:
20/07/2024Tập xác định của hàm số là:
Hướng dẫn giải
Đáp án đúng là: C
Hàm số xác định khi và chỉ khi –x2 + 2x + 3 ≥ 0.
Tam thức bậc hai f(x) = –x2 + 2x + 3 có ∆’ = 12 – (–1).3 = 4 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
Ta lại có a = –1 < 0.
Do đó ta có:
⦁ f(x) dương trên khoảng (–1; 3);
⦁ f(x) âm trên hai khoảng (–∞; –1) và (3; +∞);
⦁ f(x) = 0 khi x = –1 hoặc x = 3.
Vì vậy bất phương trình –x2 + 2x + 3 ≥ 0 có tập nghiệm là [–1; 3].
Khi đó hàm số đã cho có tập xác định là [–1; 3].
Ta chọn phương án C.
Câu 5:
14/07/2024Tập xác định của hàm số là:
Hướng dẫn giải
Đáp án đúng là: C
Hàm số xác định khi và chỉ khi –2x2 + 8x – 12 > 0.
Tam thức bậc hai f(x) = –2x2 + 8x – 12 có ∆’ = 42 – (–2).(–12) = –8 < 0.
Do đó f(x) vô nghiệm.
Ta lại có a = –2 < 0.
Vì vậy f(x) < 0, với mọi x ∈ ℝ.
Vậy bất phương trình –2x2 + 8x – 12 > 0 có tập nghiệm là ∅.
Ta chọn phương án C.
Câu 6:
19/07/2024Cho bất phương trình (m – 2)x2 + 2(2m – 3)x + 5m – 6 ≥ 0. Để x = 6 là một nghiệm của bất phương trình trên thì m nhận giá trị nào trong các giá trị sau đây?
Hướng dẫn giải
Đáp án đúng là: A
Vì x = 6 là một nghiệm của bất phương trình (m – 2)x2 + 2(2m – 3)x + 5m – 6 ≥ 0 nên ta có:
(m – 2).62 + 2(2m – 3).6 + 5m – 6 ≥ 0.
⇔ 36(m – 2) + 12(2m – 3) + 5m – 6 ≥ 0
⇔ 65m – 114 ≥ 0
Vậy thỏa mãn yêu cầu bài toán.
Ta chọn phương án A.
Câu 7:
13/07/2024Cho hàm số bậc hai f(x) có đồ thị như hình bên.
Tập nghiệm của bất phương trình f(x) ≥ 0 là:
Hướng dẫn giải
Đáp án đúng là: C
Quan sát đồ thị, ta thấy f(x) ≥ 0 khi và chỉ khi x ≤ –1 hoặc x ≥ 5.
Vì vậy tập nghiệm của bất phương trình f(x) ≥ 0 là (–∞; –1] ∪ [5; +∞).
Ta chọn phương án C.
Câu 8:
23/07/2024Tập nghiệm của bất phương trình (2x – 5)(x + 2) ≥ x2 – 4 là:
Hướng dẫn giải
Đáp án đúng là: D
Ta có (2x – 5)(x + 2) ≥ x2 – 4.
⇔ 2x2 – x – 10 ≥ x2 – 4.
⇔ x2 – x – 6 ≥ 0.
Tam thức bậc hai f(x) = x2 – x – 6 có ∆ = (–1)2 – 4.1.(–6) = 25 > 0.
Suy ra f(x) có hai nghiệm phân biệt là:
Ta lại có a = 1 > 0.
Vì vậy:
⦁ f(x) dương với mọi x thuộc hai khoảng (–∞; –2) và (3; +∞);
⦁ f(x) âm với mọi x thuộc khoảng (–2; 3);
⦁ f(x) = 0 khi x = –2 hoặc x = 3.
Vậy bất phương trình x2 – x – 6 ≥ 0 có tập nghiệm là (–∞; –2] ∪ [3; +∞).
Do đó ta chọn phương án D.
Bài thi liên quan
-
Trắc nghiệm Toán 10 CTST Bài 2. Giải phương trình bậc hai một ẩn (Nhận biết) có đáp án
-
7 câu hỏi
-
30 phút
-
-
Trắc nghiệm Toán 10 CTST Bài 2. Giải phương trình bậc hai một ẩn (Vận dụng) có đáp án
-
5 câu hỏi
-
30 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 2. Giải bất phương trình bậc hai một ẩn có đáp án (311 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 2. Giải phương trình bậc hai một ẩn (Phần 2) có đáp án (462 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 CTST Bài tập cuối chương 7 (Phần 2) có đáp án (651 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 1. Dấu của tam thức bậc hai (Phần 2) có đáp án (613 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 3. Phương trình quy về phương trình bậc hai (Phần 2) có đáp án (367 lượt thi)
- Trắc nghiệm Toán 10 Bài 1. Dấu của tam thức bậc hai có đáp án (273 lượt thi)
- Trắc nghiệm Toán 10 Bài tập cuối chương 7 có đáp án (206 lượt thi)
- Trắc nghiệm Toán 10 Bài 3. Phương trình quy về phương trình bậc hai có đáp án (178 lượt thi)