Trắc nghiệm Toán 10 CTST Bài 2. Định lý côsin và định lý sin có đáp án
Dạng 3: Cách tính bán kính đường tròn nội tiếp, ngoại tiếp của tam giác có đáp án
-
739 lượt thi
-
12 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
19/07/2024Hướng dẫn giải:
Ta áp dụng công thức \(\frac{a}{{\sin A}} = 2R\)
\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{BC}}{{2\sin A}} = \frac{8}{{2\sin 30^\circ }} = \frac{8}{{2.\frac{1}{2}}} = 8\).
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là R = 8.
Câu 2:
21/07/2024Hướng dẫn giải:
Theo địn lí côsin ta có: \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)
Thay số: \(B{C^2} = {6^2} + {8^2} - 2.6.8.\cos 60^\circ = 52\)
\( \Rightarrow BC = \sqrt {52} \).
Do đó ta có nửa chu vi tam giác ABC là:
\(p = \frac{1}{2}\left( {AB + AC + BC} \right) = \frac{1}{2}\left( {6 + 8 + \sqrt {52} } \right) = 7 + \sqrt {13} \).
Diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 12\sqrt 3 \).
Mặt khác \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{12\sqrt 3 }}{{7 + \sqrt {13} }} \approx 1,96\).
Câu 3:
18/07/2024Tam giác ABC có a = 20, b = 15, c = 9. Bán kính r của đường tròn nội tiếp tam giác đã cho gần với giá trị nào dưới đây?
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có \(p = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\left( {20 + 15 + 9} \right) = 22\).
Do đó diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {22.\left( {22 - 20} \right).\left( {22 - 15} \right).\left( {22 - 9} \right)} = 2\sqrt {1001} \).
Lại có \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{2\sqrt {1001} }}{{22}} \approx 5,75\).
Câu 4:
23/07/2024Hướng dẫn giải:
Đáp án đúng là: C.
Tam giác ABC có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)
Thay số: \(B{C^2} = {4^2} + {8^2} - 2.4.8.\cos 30^\circ = 80 - 32\sqrt 3 \)
Do đó: BC ≈ 5.
Ta có: \(\frac{{BC}}{{\sin A}} = 2R\)\( \Rightarrow R = \frac{{BC}}{{2\sin A}} \approx \frac{5}{{2.\sin 30^\circ }} = 5\).
Câu 5:
20/07/2024Cho tam giác ABC biết a = 21 cm, b = 17 cm, c = 10. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Hướng dẫn giải:
Đáp án đúng là: B.
Nửa chu vi tam giác ABC là: \(p = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\left( {21 + 17 + 10} \right) = 24\).
Do đó diện tích tam giác ABC bằng:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = 84\)
Mặt khác \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{21.17.10}}{{4.84}} = 10,625\).
Câu 6:
13/07/2024Tam giác DEF có DE = 5, DF = 8 và \(\widehat {EDF} = 50^\circ \). Bán kính r của đường tròn nội tiếp tam giác đã cho gần nhất với giá trị nào sau đây?
Hướng dẫn giải:
Đáp án đúng là: A.
Theo định lí côsin ta có: \[E{F^2} = D{E^2} + D{F^2} - 2.DF.DF\]
\( \Rightarrow \)\(E{F^2} = {5^2} + {8^2} - 2.5.8.\cos 50^\circ \approx 37,58\)
\( \Rightarrow EF \approx 6,13\).
Ta có \(p = \frac{1}{2}\left( {DE + DF + EF} \right) \approx \frac{1}{2}\left( {5 + 8 + 6,13} \right) = 9,565\).
Do đó diện tích tam giác ABC là: \(S = \sqrt {p\left( {p - DE} \right)\left( {p - DF} \right)\left( {p - EF} \right)} \approx 15,32\).
Lại có \(S = p.r \Rightarrow r = \frac{S}{p} \approx \frac{{15,32}}{{9,565}} \approx 1,6\).
Câu 7:
19/07/2024Hướng dẫn giải:
Đáp án đúng là: D.
Ta có: \(\frac{a}{{\sin A}}\) = 2R \( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{14}}{{2\sin 60^\circ }} = \frac{{14\sqrt 3 }}{3}\).
Câu 8:
16/07/2024Hướng dẫn giải:
Đáp án đúng là: D.
Cách 1: R là bán kính đường tròn ngoại tiếp tam giác đều cạnh a.
Do đó ta có: \(R = \frac{a}{{2\sin 60^\circ }} = \frac{a}{{\sqrt 3 }} = \frac{{a\sqrt 3 }}{3}\).
Cách 2: Độ dài đường trung tuyến của tam giác đều cạnh a là: \(\frac{{a\sqrt 3 }}{2}\).
Trong tam giác đều tâm đường tròn ngoại tiếp của tam giác là giao của ba đường trung trực, đồng thời là giao của ba đường trung tuyến. Do đó:
\(R = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).
Câu 9:
19/07/2024Hướng dẫn giải:
Đáp án đúng là: C.
Nửa chu vi của tam giác là p = \(\frac{{a + a + a}}{2} = \frac{{3a}}{2}\).
Diện tích của tam giác là
S = \(\sqrt {p{{\left( {p - a} \right)}^3}} = \sqrt {\frac{{3a}}{2}{{\left( {\frac{{3a}}{2} - a} \right)}^3}} = \frac{{{a^2}\sqrt 3 }}{4}\).
Lại có: S = pr
Suy ra: r = \(\frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{4}:\frac{{3a}}{2} = \frac{{a\sqrt 3 }}{6}\).
Câu 10:
13/07/2024Tam giác ABC vuông tại A có đường cao AH = 4,8 và \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Hướng dẫn giải:
Đáp án đúng là: C.
Từ \(\frac{{AB}}{{AC}} = \frac{3}{4}\)\( \Leftrightarrow \frac{{AB}}{3} = \frac{{AC}}{4}\).
Đặt \(\frac{{AB}}{3} = \frac{{AC}}{4} = k\), k > 0 ⇒ AB = 3k; AC = 4k
Ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\)\( \Leftrightarrow \frac{1}{{{{4,8}^2}}} = \frac{1}{{9{k^2}}} + \frac{1}{{16{k^2}}}\)⇒ k = 2.
Do đó: AB = 6; AC = 8 ⇒ BC = 10 (sử dụng định lí Pythagore).
Trong tam giác vuông bán kính đường tròn ngoại tiếp tam giác bằng nửa cạnh huyền.
Vậy R = \(\frac{{BC}}{2} = \frac{{10}}{2}\)= 5.
Câu 11:
19/07/2024Hướng dẫn giải:
Đáp án đúng là: A.
Tam giác ABC vuông cân tại A nên AB = AC = 2a.
Áp dụng định lí Pythagore ta tính được: BC = \(\sqrt {A{B^2} + A{C^2}} \)= 2a\(\sqrt 2 \).
Diện tích tam giác ABC là: S = \(\frac{1}{2}\)AB.AC = 2a2.
Nửa chu vi tam giác ABC là: p = \(\frac{1}{2}\)(AB + AC + BC) = 2a + a\(\sqrt 2 \).
Mặt khác: S = p.r \( \Rightarrow \)r = \(\frac{S}{p} = \frac{{2{a^2}}}{{2a + a\sqrt 2 }}\)= 2a – a\(\sqrt 2 \).
Câu 12:
19/07/2024Hướng dẫn giải:
Đáp án đúng là: B.
Không mất tính tổng quát, do tam giác ABC cân tại A, ta giả sử AB = AC = a.
Do đó: BC = \(\sqrt {A{B^2} + A{C^2}} \)= a\(\sqrt 2 \).
Trong tam giác vuông bán kính đường tròn ngoại tiếp tam giác bằng nửa cạnh huyền.
Nên R = \(\frac{{BC}}{2} = \frac{{a\sqrt 2 }}{2}\).
Diện tích tam giác ABC là: S = \(\frac{1}{2}\)AB.AC = \(\frac{{{a^2}}}{2}\).
Nửa chu vi tam giác ABC là: p = \(\frac{1}{2}\)(AB + AC + BC) = a + \(\frac{{a\sqrt 2 }}{2}\).
Mặt khác: S = p.r \( \Rightarrow \)r = \(\frac{S}{p} = \frac{{\frac{{{a^2}}}{2}}}{{a + \frac{{a\sqrt 2 }}{2}}} = \frac{{2a - a\sqrt 2 }}{2}\).
Vậy \(\frac{R}{r}\)= \(\frac{{\frac{{a\sqrt 2 }}{2}}}{{\frac{{2a - a\sqrt 2 }}{2}}} = 1 + \sqrt 2 \).
Bài thi liên quan
-
Dạng 1: Xác định các cạnh và góc chưa biết trong tam giác có đáp án
-
12 câu hỏi
-
30 phút
-
-
Dạng 2: Chứng minh các đẳng thức, hệ thức liên quan có đáp án
-
12 câu hỏi
-
30 phút
-
-
Dạng 4: Các cách tính diện tích tam giác có đáp án
-
12 câu hỏi
-
30 phút
-
-
Dạng 5: Chứng minh dạng tam giác (vuông, nhọn, tù) có đáp án
-
14 câu hỏi
-
30 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 CTST Bài 1. Giá trị lượng giác của một góc từ 0° đến 180° có đáp án (857 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 2. Định lý côsin và định lý sin có đáp án (738 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 3. Giải tam giác và ứng dụng thực tế có đáp án (353 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 CTST Bài 2. Hàm số bậc hai có đáp án (1352 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 1: Mệnh đề có đáp án (955 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 2: Tìm tổng của hai hay nhiều vectơ có đáp án (901 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 4. Tích vô hướng của hai vectơ có đáp án (832 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 1: Xác định vectơ. Tìm điểm đầu, điểm cuối, giá của vectơ có đáp án (785 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 3. Tích của một số với một vectơ có đáp án (728 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 2: Tập hợp có đáp án (666 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 1: Bất phương trình bậc nhất hai ẩn có đáp án (647 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 4. Các số đặc trưng đo mức độ phân tán của mẫu số liệu có đáp án (631 lượt thi)
- Trắc nghiệm Toán 10 CTST Bài 1. Số gần đúng và sai số có đáp án (622 lượt thi)