Đề kiểm tra giữa học kì 2 Toán 10 Cánh Diều có đáp án
Đề kiểm tra giữa học kì 2 Toán 10 Cánh Diều - Đề 02 có đáp án
-
719 lượt thi
-
38 câu hỏi
-
90 phút
Danh sách câu hỏi
Câu 1:
15/07/2024Nếu một công việc được hoàn thành bởi một trong ba hành động. Nếu hành động thứ nhất có m cách thực hiện, hành động thứ hai có n cách thực hiện, hành động thứ ba có k cách thực hiện (các cách thực hiện của ba hành động là khác nhau đôi một) thì số cách hoàn thành công việc đó là
Đáp án B
Câu 2:
20/07/2024Nếu một công việc được hoàn thành bởi ba hành động liên tiếp. Nếu hành động thứ nhất có m cách thực hiện, ứng với mỗi cách thực hiện hành động thứ nhất, có n cách thực hiện hành động thứ hai, ứng với mỗi cách thực hiện hành động thứ nhất và mỗi cách thực hiện hành động số hai, có k cách thực hiện hành động số ba thì số cách hoàn thành công việc đó là
Đáp án B
Câu 3:
23/07/2024Cho tập A = {0; 1; 3; 5; 7}. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số sao cho các chữ số đó đôi một khác nhau và là số chẵn.
Đáp án đúng là: C
Vì là số chẵn nên chữ số hàng đơn vị chỉ có thể là 0.
Chọn chữ số hàng nghìn có 4 cách chọn.
Chọn chữ số hàng trăm có 3 cách chọn.
Chọn chữ số hàng chục có 2 cách chọn.
Số số lập được là:
4 . 3 . 2 = 24 (số).
Câu 4:
13/07/2024Phương tiện bạn Khoa có thể chọn đi từ Hải Dương xuống Hà Nội rồi từ Hà Nội vào Đà Lạt được thể hiện qua sơ đồ cây sau:
Hỏi bạn Khoa có mấy cách chọn phương tiện đi từ Hải Dương xuống Hà Nội rồi từ Hà Nội vào Đà Lạt?
Đáp án B
Câu 5:
18/07/2024Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Mỗi chỉnh hợp chập k của n phần tử đã cho là
Đáp án C
Câu 7:
13/07/2024Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
Đáp án D
Câu 8:
17/07/2024Có bao nhiêu cách xếp 5 người ngồi vào một dãy ghế gồm có 6 chiếc ghế, biết mỗi người ngồi vào một ghế.
Đáp án đúng là: D
Mỗi cách sắp xếp 5 người vào dãy 6 ghế là một chỉnh hợp chập 5 của 6. Do đó, có số cách sắp xếp là \(A_6^5 = 720\) cách.
Câu 9:
13/07/2024Đáp án đúng là: A
Xếp bạn Châu ngồi giữa có 1 cách.
Xếp 4 bạn sinh Anh, Chánh, Hằng, Loan vào 4 chỗ còn lại, mỗi cách xếp là một hoán vị của 4 phần tử nên có 4! = 24 cách.
Vậy có 1 . 24 = 24 cách xếp.
Câu 10:
20/07/2024Cho tập hợp H = {1; 3; 5; 7; 9; 11}. Một tổ hợp chập 3 của 6 phần tử của H là
Đáp án B
Câu 11:
23/07/2024Với n là số nguyên dương tùy ý lớn hơn 1, mệnh đề nào dưới đây đúng?
Đáp án B
Câu 12:
21/07/2024Một lớp có 40 học sinh gồm 25 nam và 15 nữ. Hỏi có bao nhiêu cách chọn ra một nhóm 3 học sinh trong đó có ít nhất một học sinh nữ?
Đáp án đúng là: A
Chọn ra một nhóm gồm 3 học sinh bất kì trong 40 học sinh có \(C_{40}^3\) (cách chọn).
Chọn ra một nhóm gồm 3 học sinh toàn là nam có \(C_{25}^3\) (cách chọn).
Số cách chọn ra một nhóm 3 học sinh trong đó có ít nhất một học sinh nữ là:
\(C_{40}^3 - C_{25}^3 = 7580\) (cách chọn).
Câu 13:
21/07/2024Trong một hộp đựng 4 viên bi hồng và 3 viên bi tím. Lấy ngẫu nhiên ra 2 viên. Có bao nhiêu cách lấy được 2 viên bi cùng màu?
Đáp án đúng là: C
Số cách lấy 2 viên bi cùng màu hồng là \(C_4^2 = 6\).
Số cách lấy 2 viên bi cùng màu tím là \(C_3^2 = 3\).
Như vậy, số cách lấy được hai viên bi cùng màu là: 6 + 3 = 9 (cách).
Câu 14:
19/07/2024Cho biểu thức (a + b)n , với n = 4 thì khi khai triển ta được một biểu thức có số số hạng là
Đáp án B
Câu 16:
14/07/2024Số hạng không chứa x trong khai triển nhị thức Newton của (2x – 5)5 là
Đáp án đúng là: C
Ta có:
(2x – 5)5
\( = C_5^0.{\left( {2x} \right)^5} + C_5^1.{\left( {2x} \right)^4}.\left( { - 5} \right) + C_5^2.{\left( {2x} \right)^3}.{\left( { - 5} \right)^2} + C_5^3.{\left( {2x} \right)^2}.{\left( { - 5} \right)^3} + C_5^4.\left( {2x} \right).{\left( { - 5} \right)^4} + C_5^5.{\left( { - 5} \right)^5}\)
= 32x5 – 400x4 + 2000x3 – 5000x2 + 6250x – 3125.
Do đó, số hạng không chứa x trong khai triển nhị thức Newton của (2x – 5)5 là – 3125.
Câu 17:
13/07/2024Trong mặt phẳng tọa độ Oxy, cho vectơ \(\overrightarrow a = - 2\overrightarrow i + 3\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \) là
Đáp án C
Câu 18:
18/07/2024Trong mặt phẳng tọa độ Oxy, cho M(3; – 6) và N(5; 2). Tọa độ trung điểm I của MN là
Đáp án A
Câu 19:
15/07/2024Trong mặt phẳng tọa độ Oxy, cho điểm H(1; 6). Tọa độ của vectơ \(\overrightarrow {OH} \) là
Đáp án A
Câu 20:
22/07/2024Tìm các số thực a và b để cặp vectơ sau bằng nhau \(\overrightarrow x = \left( {a + b; - 2a + 3b} \right)\) và \(\overrightarrow y = \left( {2a - 3;\,4b} \right)\).
Đáp án đúng là: B
Ta có: \(\overrightarrow x = \overrightarrow y \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a - b = 3\\2a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\).
Câu 21:
18/07/2024Cho hình bình hành ABCD có A(– 1; – 2), B(3; 2), C(4; – 1). Tọa độ của đỉnh D là
Đáp án đúng là: D
ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}3 - \left( { - 1} \right) = 4 - {x_D}\\2 - \left( { - 2} \right) = - 1 - {y_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = - 5\end{array} \right.\).
Vậy D(0; – 5).
Câu 22:
21/07/2024Trong mặt phẳng tọa độ Oxy, cho A(2; 7) và B(– 2; 8). Độ dài đoạn thẳng AB là
Đáp án C
Câu 23:
20/07/2024Cho hai vectơ \(\overrightarrow x = \left( {3;\, - 4} \right)\), \(\overrightarrow y = \left( { - 6;\,\,8} \right)\). Khẳng định nào sau đây là đúng?
Đáp án C
Câu 24:
21/07/2024Trong mặt phẳng tọa độ Oxy, cho hai vectơ \(\overrightarrow a = \left( {4;\,\, - m} \right)\) và \(\overrightarrow b = \left( {2m + 6;\,\,1} \right)\). Tập giá trị của m để hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương là
Đáp án đúng là: C
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương \( \Leftrightarrow \overrightarrow a = k\overrightarrow b \)\( \Rightarrow \left\{ \begin{array}{l}4 = k\left( {2m + 6} \right)\\ - m = k\end{array} \right. \Rightarrow \left[ \begin{array}{l}m = - 1\\m = - 2\end{array} \right.\).
Câu 25:
13/07/2024Cho tam giác ABC có A(1; 2), B(– 1; 1), C(5; – 1). Tính \(\overrightarrow {AB} \cdot \overrightarrow {AC} \).
Đáp án đúng là: B
Ta có: \(\overrightarrow {AB} = \left( { - 2;\,\, - 1} \right),\,\,\overrightarrow {AC} = \left( {4;\,\, - 3} \right)\).
Do đó, \(\overrightarrow {AB} \cdot \overrightarrow {AC} = \left( { - 2} \right) \cdot 4 + \left( { - 1} \right) \cdot \left( { - 3} \right) = - 8 + 3 = - 5\).
Câu 26:
23/07/2024Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: – x + 2y + 7 = 0. Vectơ pháp tuyến của đường thẳng d là
Đáp án B
Câu 27:
13/07/2024Phương trình tham số của đường thẳng ∆ đi qua điểm A(– 4; 2) và nhận \(\overrightarrow u = \left( {2;\,\, - 5} \right)\) làm vectơ chỉ phương là
Đáp án B
Câu 28:
19/07/2024Phương trình tổng quát của đường thẳng d đi qua điểm A(1; – 3) và nhận \(\overrightarrow n = \left( { - 2;\,\,7} \right)\) làm vectơ pháp tuyến là
Đáp án C
Câu 29:
21/07/2024Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3; – 1) và B(– 6; 2). Phương trình nào sau đây không phải là phương trình tham số của đường thẳng AB?
Đáp án đúng là: B
Cách 1. Thay tọa độ các điểm A, B lần lượt vào các phương trình trong các đáp án thì thấy đáp án B không thỏa mãn.
Cách 2. Nhận thấy rằng các phương trình ở các đáp án A, C, D thì vectơ chỉ phương của các đường thẳng đó cùng phương, riêng chủ có đáp án B thì không. Do đó chọn đáp án B.
Câu 30:
19/07/2024Cho đường thẳng ∆ đi qua điểm A(4; – 5) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\,2} \right)\). Phương trình tham số của đường thẳng ∆ là
Đáp án đúng là: A
Do đường thẳng ∆ có một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\,2} \right)\) nên đường thẳng ∆ có một vectơ chỉ phương là \(\overrightarrow u = \left( {2;\,\, - 1} \right)\).
Do đó, phương trình tham số của đường thẳng ∆ là \(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 5 - t\end{array} \right.\).
Câu 32:
13/07/2024Góc giữa hai đường thẳng a: 6x – 5y + 15 = 0 và b: \(\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\) bằng
Đáp án đúng là: B
Đường thẳng a có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {6;\,\, - 5} \right)\);
Đường thẳng b có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( { - 6;\,\,5} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {5;\,6} \right)\).
Ta thấy: \(\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} = 6 \cdot 5 + \left( { - 5} \right) \cdot 6 = 0\).
Suy ra góc giữa hai đường thẳng bằng 90°.
Câu 33:
21/07/2024Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 2), B(3; 1) và C(5; 4). Phương trình nào sau đây là phương trình đường cao kẻ từ A của tam giác ABC?
Đáp án đúng là: A
Ta có: \(\overrightarrow {BC} = \left( {2;\,\,3} \right)\).
Đường cao kẻ từ A của tam giác ABC nhận \(\overrightarrow {BC} \) làm vectơ pháp tuyến và đi qua điểm A nên có phương trình là: 2(x – 1) + 3(y – 2) = 0 hay 2x + 3y – 8 = 0.
Câu 34:
15/07/2024Tọa độ giao điểm của hai đường thẳng x – 3y – 6 = 0 và 3x + 4y – 1 = 0 là
Đáp án A
Câu 35:
21/07/2024Cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 8 - \left( {m + 1} \right)t\\y = 10 + t\end{array} \right.\) và d2: mx + 2y – 14 = 0. Giá trị của m để hai đường thẳng trên song song với nhau là
Đáp án đúng là: C
Ta có: \({d_1}:\left\{ \begin{array}{l}x = 8 - \left( {m + 1} \right)t\\y = 10 + t\end{array} \right.\).
Từ đó suy ra, đường thẳng d1 đi qua điểm A(8; 10) và có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - m - 1;\,\,1} \right)\), do đó nó có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;\,\,m + 1} \right)\).
Ta có: d2: mx + 2y – 14 = 0.
Từ đó suy ra đường thẳng d2 có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {m;\,\,2} \right)\).
\({d_1}\,{\rm{//}}\,{d_2} \Leftrightarrow \left\{ \begin{array}{l}A \notin {d_2}\\\left[ \begin{array}{l}m = 0 \to \left\{ \begin{array}{l}\overrightarrow {{n_1}} = \left( {1;\,\,1} \right)\\\overrightarrow {{n_2}} = \left( {0;\,\,2} \right)\end{array} \right.(ktm)\\m \ne 0 \to \frac{1}{m} = \frac{{m + 1}}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}8m + 6 \ne 0\\m \ne 0\\m\left( {m + 1} \right) = 2\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 2\end{array} \right.\).
Vậy m ∈ {– 2; 1} thì d1 // d2.
Câu 36:
22/07/2024Một nhóm học sinh gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một đội cờ đỏ sao cho phải có 1 đội trưởng nam, 1 đội phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập đội cờ đỏ?
Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:
• Trường hợp 1: chọn 1 nữ và 4 nam.
+) Số cách chọn 1 nữ: 5 cách
+) Số cách chọn 2 nam làm đội trưởng và đội phó: \(A_{15}^2\)
+) Số cách chọn 2 nam còn lại: \(C_{13}^2\)
Suy ra có \(5A_{15}^2.C_{13}^2\) cách chọn cho trường hợp này.
• Trường hợp 2: chọn 2 nữ và 3 nam.
+) Số cách chọn 2 nữ: \(C_5^2\) cách.
+) Số cách chọn 2 nam làm đội trưởng và đội phó: \(A_{15}^2\)cách.
+) Số cách chọn 1 còn lại: 13 cách.
Suy ra có \[13A_{15}^2.C_5^2\] cách chọn cho trường hợp này.
• Trường hợp 3: Chọn 3 nữ và 2 nam.
+) Số cách chọn 3 nữ : \(C_5^3\) cách.
+) Số cách chọn 2 làm đội trưởng và đội phó: \(A_{15}^2\) cách.
Suy ra có \(A_{15}^2.C_5^3\) cách chọn cho trường hợp 3.
Vì các trường hợp là rời nhau. Vậy nên ta có \(5A_{15}^2.C_{13}^2 + 13A_{15}^2.C_5^2 + A_{15}^2.C_5^3 = 111\,300\) cách.
Câu 37:
16/07/2024Cho đường thẳng d1: 2x – y – 2 = 0; d2: x + y + 3 = 0 và điểm M(3; 0). Viết phương trình đường thẳng ∆ đi qua điểm M, cắt d1 và d2 lần lượt tại A và B sao cho M là trung điểm của đoạn AB.
Gọi tọa độ các điểm A, B và M là A(xA; yA); B(xB; yB) và M(xM; yM).
Vì A thuộc d1 nên 2xA – yA – 2 = 0. Suy ra yA = 2xA – 2.
Vì B thuộc d2 nên xB + yB + 3 = 0. Suy ra yB = – xB – 3.
Do M là trung điểm của đoạn AB nên
\(\left\{ \begin{array}{l}{x_A} + {x_B} = 2{x_M}\\{y_A} + {y_B} = 2{y_M}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 6\\\left( {2{x_A} - 2} \right) + \left( { - {x_B} - 3} \right) = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = \frac{{11}}{3}\\{y_A} = \frac{{16}}{3}\end{array} \right.\).
Suy ra \(A\left( {\frac{{11}}{3};\,\,\frac{{16}}{3}} \right)\).
Đường thẳng ∆ đi qua điểm A và điểm M.
Ta có: \(\overrightarrow {AM} = \left( { - \frac{2}{3};\,\, - \frac{{16}}{3}} \right)\)\( \Rightarrow \overrightarrow {{u_{AM}}} = \left( {1;\,\,8} \right) \Rightarrow \overrightarrow {{n_{AM}}} = \left( {8;\,\, - 1} \right)\).
Đường thẳng ∆ đi qua M(3; 0) và có một vectơ pháp tuyến là \(\overrightarrow {{n_{AM}}} \) nên có phương trình là
8(x – 3) – (y – 0) = 0 hay 8x – y – 24 = 0.
Câu 38:
20/07/2024Cho n là số tự nhiên. Hãy tính tổng sau:
S = \(C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n\).
Ta có: S = \(C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n\)
Suy ra 2S = \[\left[ {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n} \right]\] + \(\left[ {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n} \right]\)
Lại có: \(C_n^k = C_n^{n - k}\) (tính chất tổ hợp).
Do đó, 2S = \[\left[ {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n} \right]\] + \[\left[ {C_{2n + 1}^{2n + 1} + C_{2n + 1}^{2n} + C_{2n + 1}^{2n - 1} + ... + C_{2n + 1}^{n + 1}} \right]\]
⇒ 2S = \[C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n\]\[ + C_{2n + 1}^{n + 1} + ... + C_{2n + 1}^{2n - 1} + C_{2n + 1}^{2n} + C_{2n + 1}^{2n + 1}\]
Xét khai triển (1 + x)2n + 1 = \[C_{2n + 1}^0{x^0} + C_{2n + 1}^1{x^1} + ... + C_{2n + 1}^{2n}{x^{2n}} + C_{2n + 1}^{2n + 1}{x^{2n + 1}}\].
Khi x = 1 ⇒ 2S = 22n + 1 ⇒ S = 22n = 4n.
Vậy S = 4n.
Bài thi liên quan
-
Đề kiểm tra giữa học kì 2 Toán 10 Cánh Diều - Đề 01 có đáp án
-
38 câu hỏi
-
50 phút
-
Có thể bạn quan tâm
- Đề kiểm tra giữa học kì 2 Toán 10 Cánh Diều có đáp án (718 lượt thi)
- Đề kiểm tra cuối học kì 2 Toán 10 Cánh Diều có đáp án (864 lượt thi)
Các bài thi hot trong chương
- Đề thi Học kì 1 Toán 10 Cánh diều có đáp án (501 lượt thi)
- Đề thi Giữa kì 1 Toán 10 Cánh diều có đáp án (462 lượt thi)