Trang chủ Thi thử THPT Quốc gia Toán 5 Đề thi thử thpt quốc gia môn Toán cực hay có lời giải chi tiết

5 Đề thi thử thpt quốc gia môn Toán cực hay có lời giải chi tiết

5 Đề thi thử thpt quốc gia môn Toán cực hay có lời giải chi tiết (Đề số 2)

  • 476 lượt thi

  • 50 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 2:

18/11/2024

Trong không gian Oxyz, mặt phẳng (Oxy) có phương trình là

Xem đáp án

Đáp án đúng: D

*Lời giải:

*Phương pháp giải:

Mặt phẳng (Oxy) là tập hợp các điểm có cao độ z = 0 nên có phương trình: z = 0.

*Cách giải và các dạng bài toán về hệ trục tọa độ trong không gian:

Phương trình tổng quát của mặt phẳng

    - Trong không gian Oxy , mọi mặt phẳng đều có dạng phương trình:

    Ax + By + Cz + D = 0 với A2 + B2 + C2 ≠ 0

    - Nếu mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 thì nó có một VTPT là n(A; B; C).

    - Phương trình mặt phẳng đi qua điểm Mo(xo; yo; zo) và nhận vectơ n(A; B; C) khác 0 là VTPT là: A(x - xo) + B(y - yo) + C(z - zo) = 0 .

    • Các trường hợp riêng

    Xét phương trình mặt phẳng (α): Ax + By + Cz + D = 0 với A2 + B2 + C2 ≠ 0

    - Nếu D = 0 thì mặt phẳng (α) đi qua gốc tọa độ O.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    - Nếu A = 0, B ≠ 0, C ≠ 0 thì mặt phẳng (α) song song hoặc chứa trục Ox.

    - Nếu A ≠ 0, B = 0, C ≠ 0 thì mặt phẳng (α) song song hoặc chứa trục Oy.

    - Nếu A ≠ 0, B ≠ 0, C = 0 thì mặt phẳng (α) song song hoặc chứa trục Oz.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    - Nếu A = B = 0, C ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oxy).

    - Nếu A = C = 0, B ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oxz).

    - Nếu B = C = 0, A ≠ 0 thì mặt phẳng (α) song song hoặc trùng với (Oyz).

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    Chú ý:

    - Nếu trong phương trình (α) không chứa ẩn nào thì (α) song song hoặc chứa trục tương ứng.

    - Phương trình mặt phẳng theo đoạn chắn (α): Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải. Ở đây (α) cắt các trục tọa độ tại các điểm (a; 0; 0), (0; b; 0), (0; 0; c) với abc ≠ 0.

Khoảng cách từ một điểm đến một mặt phẳng.

    • Trong không gian Oxyz, cho điểm Mo(xo; yo; zo) và mặt phẳng (α): Ax + By + Cz + D = 0

    Khi đó khoảng cách từ điểm Mo đến mặt phẳng (α) được tính:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Góc giữa hai mặt phẳng

    Trong không gian Oxyz, cho hai mặt phẳng (α): A1x + B1y + C1z + D1 = 0 và (β): A2x + B2y + C2z + D2 = 0

    Góc giữa (α) và (β) bằng hoặc bù với góc giữa hai VTPT nαnβ. Tức là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Một số dạng bài tập về viết phương trình mặt phẳng

    Dạng 1: Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó.

    Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 2: Viết phương trình mặt phẳng (α) đi qua 1 điểm Mo(xo; yo; zo) và song song với 1 mặt phẳng (β): Ax + By + Cz + D = 0 cho trước.

    Cách 1: Thực hiện theo các bước sau:

    1. VTPT của (β) là nβ = (A; B; C)

    2. (α) // (β) nên VTPT của mặt phẳng (α) là nα = nβ = (A; B; C)

    3. Phương trình mặt phẳng (α): A(x - x0) + B(y - y0) + C(z - z0) = 0

    Cách 2:

    1. Mặt phẳng (α) // (β) nên phương trình (P) có dạng: Ax + By + Cz + D' = 0 (*), với D' ≠ D.

    2. Vì (P) qua 1 điểm Mo(xo; yo; zo) nên thay tọa độ Mo(xo; yo; zo) vào (*) tìm được D'.

    Dạng 3: Viết phương trình mặt phẳng (α) đi qua 3 điểm A, B, C không thẳng hàng.

    1. Tìm tọa độ các vectơ: ABAC

    2. Vectơ pháp tuyến của (α) là: nα = [ABAC]

    3. Điểm thuộc mặt phẳng: A (hoặc B hoặc C).

    4. Viết phương trình mặt phẳng qua 1 điểm và có VTPT nα

Dạng 4: Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng Δ

    1. Tìm VTCP của Δ là uΔ

    2. Vì (α) ⊥ Δ nên (α) có VTPT nα = uΔ

    3. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT nα

    Dạng 5: Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β)

    1. Tìm VTPT của (β) là nβ

    2. Tìm VTCP của Δ là uΔ

    3. VTPT của mặt phẳng (α) là: nα = [nβuΔ]

    4. Lấy một điểm M trên Δ

    5. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

    Dạng 6: Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β)

    1. Tìm VTPT của (β) là nβ

    2. Tìm tọa độ vectơ AB

    3. VTPT của mặt phẳng (α) là: nα = [nβAB]

    4. Áp dụng cách viết phương trình mặt phẳng đi qua 1 điểm và có 1 VTPT.

Xem thêm các bài viết liên quan hay, chi tiết

Lý thuyết Hệ trục toạ độ trong không gian– Toán lớp 12 Kết nối tri thức

Trắc nghiệm Phương trình mặt phẳng có đáp án (Phần 1)


Câu 10:

14/07/2024

Với a và b là số thực dương tùy ý, loga3b bằng


Câu 11:

14/07/2024

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây

Xem đáp án

Chọn B

Từ đồ thị ta thấy đây là đồ thị của hàm số bậc ba có hệ số a>0

Vậy đáp án B đúng


Câu 20:

15/07/2024

Trong không gian Oxyz, cho hai điểm I(2;4;-1) và A(0;2;3). Phương trình mặt cầu có tâm I và đi qua A là


Câu 24:

22/07/2024

Tính đạo hàm của hàm số y=log2(x+ex)


Câu 28:

14/07/2024

Nguyên hàm của hàm số f(x)=x2+2xlnx  là


Câu 32:

20/07/2024

Từ các số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có sáu chữ số đôi một khác nhau trong đó các chữ số 1, 2, 3 luôn có mặt và đứng cạnh nhau

Xem đáp án

Chọn C

Ta xem 3 chữ số 1; 2; 3 đứng cạnh nhau là một phần tử X.

Chọn ra 3 chữ số còn lại có C43 cách chọn.

Xếp phần tử X và 3 chữ số vừa chọn ta có: 4! Cách.

Các chữ số 1;2;3 trong X có thể hoán vị cho nhau có: 3! Cách.

Vậy có tất cả C43.4!.3!=576 (số)


Câu 37:

20/07/2024

Xếp ngẫu nhiên tám học sinh gồm bốn học sinh nam (trong đó có Hoàng và Nam) cùng bốn học sinh nữ (trong đó có Lan) thành một hàng ngang. Xác suất để trong tám học sinh trên không có hai học sinh cùng giới đúng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam là

Xem đáp án

Chọn D

Xếp ngẫu nhiên 8 học sinh có 8! cách.

"Buộc" Hoàng, Lan, Nam thành một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên ta xem nhóm ba người này là một nam. Vậy có ba nam và ba nữ.

Trường hợp 1: nam ngồi vị trí lẻ.

Xếp 3 nam vào 3 vị trí lẻ: 3!

Xếp 3 nữ vào 3 vị trí chẵn: 3!

Hoán vị hai học sinh nam trong nhóm: 2!

Suy ra số cách xếp trong trường hợp này là: 3!.3!.2!=72 cách

Trường hợp 2: nam ngồi vị trí chẵn

Tương tự có 72 cách

Vậy có 72+72=144 cách xếp tám học sinh không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam.

Suy ra xác suất cần tìm là P=1448!=1280.


Bắt đầu thi ngay