Chứng minh rằng một tam giác có hai đường cao, xuất phát từ các đỉnh của hai góc nhọn

Với giải Bài 62 trang 83 sgk Toán 7 Tập 2 được biên soạn lời giải chi tiết sẽ giúp học sinh biết cách làm bài tập môn Toán 7. Mời các bạn đón xem:

1 1,768 17/03/2022


Giải Toán 7 Luyện tập trang 83

Video giải Bài 62 trang 83 Toán lớp 7 Tập 2

Bài 62 trang 83 Toán lớp 7 Tập 2: Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.

Lời giải:

+ TH1: Xét ΔABC vuông tại A có các đường cao AD, BA, CA.

Tài liệu VietJack

BA, CA là hai đường cao xuất phát từ hai góc nhọn B và C của ΔABC.

Theo đề bài suy ra AB = AC.

ΔABC có AB = AC nên là tam giác cân tại A (đpcm).

+ TH2: Xét ΔABC không có góc nào vuông, hai đường cao BD = CE.

Tài liệu VietJack

Xét ΔEBC và ΔDCB có :

BC là cạnh chung

CE = BD (giả thiết)

BEC^=CDB^=90°

Do đó ∆EBC = ∆DCB (cạnh huyền - cạnh góc vuông)

Suy ra EBC^=DCB^ (hai góc tương ứng)

hay ABC^=ACB^.

Tam giác ABC có ABC^=ACB^ nên là tam giác cân.

+ Xét ΔABC ba đường cao BD = CE = AF

Tài liệu VietJack

Vì CE = BD ⇒ ΔABC cân tại A (như chứng minh trên)

⇒ AB = AC  (1)

Vì CE = AF ⇒ ΔABC cân tại B (như chứng minh trên)

⇒ AB = BC  (2)

Từ (1) và (2) suy ra AB = AC = BC.

 ΔABC có ba cạnh bằng nhau nên là tam giác đều.

Xem thêm lời giải bài tập Toán lớp 7 hay, chi tiết khác:

Bài 58 trang 83 Toán 7 Tập 2: Hãy giải thích tại sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm của tam giác tù nằm ở bên ngoài tam giác...

Bài 59 trang 83 Toán 7 Tập 2: Cho hình 57. a) Chứng minh NS ⊥ LM...

Bài 60 trang 83 Toán 7 Tập 2: Trên đường thẳng d, lấy ba điểm phân biệt I, J, K (J ở giữa I và K)...

Bài 61 trang 83 Toán 7 Tập 2:  Cho tam giác ABC không vuông. Gọi H là trực tâm của nó...

1 1,768 17/03/2022