Câu hỏi:
22/07/2024 76
Xét tính liên tục của các hàm số sau:
a) f(x) = x3 ‒ x2 + 2; b)
c) d) .
Xét tính liên tục của các hàm số sau:
a) f(x) = x3 ‒ x2 + 2; b)
c) d) .
Trả lời:
a) f(x) là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.
b) Ta có: x2 ‒ 4x ≠ 0 ⇔ x ≠ 0 và x ≠ 4.
f(x) là hàm số phân thức có tập xác định D = ℝ ∖ {0; 4} nên nó liên tục trên các khoảng (‒∞; 0), (0; 4) và (4; +∞).
c) Ta có:
f(x) là hàm số phân thức có tập xác định ℝ nên nó liên tục trên ℝ.
d) Ta có: x2 ‒ 2x ≥ 0 ⇔ x ≤ 0 và x ≥ 2
f(x) là hàm số phân thức có tập xác định D = (‒∞; 0] ∪ [2; +∞) nên nó liên tục trên các khoảng (‒∞; 0] và [2; +∞).
a) f(x) là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.
b) Ta có: x2 ‒ 4x ≠ 0 ⇔ x ≠ 0 và x ≠ 4.
f(x) là hàm số phân thức có tập xác định D = ℝ ∖ {0; 4} nên nó liên tục trên các khoảng (‒∞; 0), (0; 4) và (4; +∞).
c) Ta có:
f(x) là hàm số phân thức có tập xác định ℝ nên nó liên tục trên ℝ.
d) Ta có: x2 ‒ 2x ≥ 0 ⇔ x ≤ 0 và x ≥ 2
f(x) là hàm số phân thức có tập xác định D = (‒∞; 0] ∪ [2; +∞) nên nó liên tục trên các khoảng (‒∞; 0] và [2; +∞).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số
Tìm giá trị của các tham số a và b sao cho hàm số y = f(x) liên tục trên ℝ.
Cho hàm số
Tìm giá trị của các tham số a và b sao cho hàm số y = f(x) liên tục trên ℝ.
Câu 3:
Chứng minh rằng phương trình:
a) x3 + 2x ‒ 1 = 0 có nghiệm thuộc khoảng (‒1; 1).
b) có nghiệm thuộc khoảng (0; 1).
Chứng minh rằng phương trình:
a) x3 + 2x ‒ 1 = 0 có nghiệm thuộc khoảng (‒1; 1).
b) có nghiệm thuộc khoảng (0; 1).
Câu 4:
Cho hai hàm số f(x) = x ‒ 1 và g(x) = x2 ‒ 3x + 2. Xét tính liên tục của các hàm số:
a) y = f(x).g(x); b) c)
Cho hai hàm số f(x) = x ‒ 1 và g(x) = x2 ‒ 3x + 2. Xét tính liên tục của các hàm số:
a) y = f(x).g(x); b) c)
Câu 6:
Xét tính liên tục của hàm số:
a) tại điểm x = ‒1; b) tại điểm x = 1.
Xét tính liên tục của hàm số:
a) tại điểm x = ‒1; b) tại điểm x = 1.
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + (y ‒ 1)2 = 1. Với mỗi số thực m, gọi Q(m) là số giao điểm của đường thẳng d: y = m với đường tròn (C). Viết công thức xác định hàm số y = Q(m). Hàm số này không liên tục tại các điểm nào?
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + (y ‒ 1)2 = 1. Với mỗi số thực m, gọi Q(m) là số giao điểm của đường thẳng d: y = m với đường tròn (C). Viết công thức xác định hàm số y = Q(m). Hàm số này không liên tục tại các điểm nào?
Câu 8:
Cho nửa đường tròn đường kính AB = 2. Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc .
Kí hiệu diện tích tam giác ABC là S(α) (phụ thuộc vào α). Xét tính liên tục của hàm số S(α) trên khoảng và tính các giới hạn
Cho nửa đường tròn đường kính AB = 2. Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc .
Kí hiệu diện tích tam giác ABC là S(α) (phụ thuộc vào α). Xét tính liên tục của hàm số S(α) trên khoảng và tính các giới hạn
Câu 9:
Dùng định nghĩa, xét tính liên tục của hàm số:
a) f(x) = x3 ‒ 3x + 2 tại điểm x = ‒2;
b) tại điểm x = 0.
Dùng định nghĩa, xét tính liên tục của hàm số:
a) f(x) = x3 ‒ 3x + 2 tại điểm x = ‒2;
b) tại điểm x = 0.
Câu 10:
Cho hai hàm số và
Tìm giá trị của tham số a sao cho hàm số h(x) = f(x) + g(x) liên tục tại x = 1.
Cho hai hàm số và
Tìm giá trị của tham số a sao cho hàm số h(x) = f(x) + g(x) liên tục tại x = 1.