Câu hỏi:
17/07/2024 188Xét các số phức z = a + bi(a,b) thỏa mãn điều kiện |z - 4 - 3i| = . Tính P = a + b khi giá trị biểu thức |z + 1 - 3i| + |z - 1 + i| đạt giá trị lớn nhất.
A. P = 10
B. P = 4
C. P = 6
D. P = 8
Trả lời:
Đáp án A.
Gọi M(x;y) là điểm biểu diễn số phức z.
Từ giả thiết, ta có
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =
Khi đó P = MA + MB, với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà
suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C).
Vậy Dấu “=” xảy ra
=> a + b = 10
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.= 1 và |z - + i|. Tìm số phần tử của S
Câu 2:
Trong mặt phẳng phức, gọi M là điểm biểu diễn số phức với z = a+bi(a,b, 0). Chọn kết luận đúng.
Câu 4:
Trên tập , cho số phức z = với m là tham số thực khác -1. Tìm tất cả các giá trị của tham số m để z. = 5
Câu 5:
Cho số phức z thỏa mãn = 1. Biết rằng tập các điểm biễu diễn số phức z là một đường tròn (C). Tính bán kính r của đường tròn (C).
Câu 6:
Cho số phức z thỏa mãn (3-4i)z - = 8. Trên mặt phẳng tọa độ, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức z thuộc tập nào?
Câu 7:
Trong tập các số phức gọi là hai nghiệm của phương trình với có phần ảo dương. Cho số phức z thỏa mãn |z-| = 1 Giá trị nhỏ nhất của P = |z-| là
Câu 8:
Gọi A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn các số phức khác 0 thỏa mãn đẳng thức = 0, khi đó tam giác OAB (O là gốc tọa độ)
Câu 11:
Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M và M’. Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn là N, N’. Biết rằng M, M’, N , N’ là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của |z+4i-5|
Câu 12:
Cho số phức z thỏa mãn z(2-i) + 13i = 1. Tính mô đun của số phức z.
Câu 14:
Gọi là hai nghiệm của phương trình - 2z + 2 = 0, (z). Tính giá trị của biểu thức P = 2|| + ||