Câu hỏi:
15/07/2024 132
Từ định nghĩa hình lăng trụ, nhận xét đặc điểm các mặt bên, cạnh bên và hai mặt đáy của hình lăng trụ.
Trả lời:
Lời giải
Từ định nghĩa hình lăng trụ, ta có các nhận xét sau:
• Các cạnh bên của hình lăng trụ song song và bằng nhau.
• Các mặt bên của hình lăng trụ là các hình bình hành.
• Hai mặt đáy của hình lăng trụ là hai đa giác có các cạnh tương ứng song song và bằng nhau.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B’.
a) Chứng minh rằng EF // (BCC’B’).
b) Gọi I là giao điểm của đường thẳng CF với mặt phẳng (AC’B). Chứng minh rằng I là trung điểm đoạn thẳng CF.
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B’.
a) Chứng minh rằng EF // (BCC’B’).
b) Gọi I là giao điểm của đường thẳng CF với mặt phẳng (AC’B). Chứng minh rằng I là trung điểm đoạn thẳng CF.
Câu 2:
Cho hình hộp ABCD.A’B’C D’.
a) Chứng minh rằng (ACB’) // (A’C’D).
b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.
c) Chứng minh rằng BG1 = G1G2 = D’G2.
Cho hình hộp ABCD.A’B’C D’.
a) Chứng minh rằng (ACB’) // (A’C’D).
b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.
c) Chứng minh rằng BG1 = G1G2 = D’G2.
Câu 3:
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA’, C’D’, AD’. Chứng minh rằng:
a) NQ // A’D’ và NQ = \(\frac{1}{2}\)A’D’;
b) Tứ giác MNQC là hình bình hành;
c) MN // (ACD’);
d) (MNP) // (ACD’).
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA’, C’D’, AD’. Chứng minh rằng:
a) NQ // A’D’ và NQ = \(\frac{1}{2}\)A’D’;
b) Tứ giác MNQC là hình bình hành;
c) MN // (ACD’);
d) (MNP) // (ACD’).
Câu 5:
Cho một số ví dụ về những đồ dùng, vật thể trong thực tế có dạng hình lăng trụ.
Câu 6:
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua một điểm.
Câu 8:
Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh hình lăng trụ, hình hộp. Chẳng hạn: Khung lịch để bàn (Hình 68); Tháp đôi Puerta de Europa ở Madrid, Tây Ban Nha (Hình 69), …
Hình lăng trụ và hình hộp là hình như thế nào?
Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh hình lăng trụ, hình hộp. Chẳng hạn: Khung lịch để bàn (Hình 68); Tháp đôi Puerta de Europa ở Madrid, Tây Ban Nha (Hình 69), …
Hình lăng trụ và hình hộp là hình như thế nào?
Câu 9:
Nêu nhận xét gì về hai mặt phẳng chứa hai mặt đối diện của hình hộp.
Câu 10:
Cho hai mặt phẳng song song (P) và (P’). Trong mặt phẳng (P), cho đa giác A1A2….An. Qua các đỉnh A1, A2, ..., An vẽ các đường thẳng song song với nhau và cắt mặt phẳng (P’) lần lượt tại A1’, A2’, ..., An’ (Hình 70 minh hoạ cho trường hợp n = 5).
a) Các tứ giác A1A2A2’A1’, A2A3A3’A2’, …, AnA1A1’An’ là những hình gì?
b) Các cạnh tương ứng của hai đa giác A1A2…An và A1’A2’…An’ có đặc điểm gì?
Cho hai mặt phẳng song song (P) và (P’). Trong mặt phẳng (P), cho đa giác A1A2….An. Qua các đỉnh A1, A2, ..., An vẽ các đường thẳng song song với nhau và cắt mặt phẳng (P’) lần lượt tại A1’, A2’, ..., An’ (Hình 70 minh hoạ cho trường hợp n = 5).
a) Các tứ giác A1A2A2’A1’, A2A3A3’A2’, …, AnA1A1’An’ là những hình gì?
b) Các cạnh tương ứng của hai đa giác A1A2…An và A1’A2’…An’ có đặc điểm gì?