Câu hỏi:

21/07/2024 206

Cho hình hộp ABCD.A’B’C D’.

a) Chứng minh rằng (ACB’) // (A’C’D).

b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.

c) Chứng minh rằng BG1 = G1G2 = D’G2.

Trả lời:

verified Giải bởi Vietjack

Lời giải

a)

Media VietJack

Ta có: (ABCD) // (A’B’C’D’) ( do ABCD.A’B’C’D’ là hình hộp);

           (ABCD) ∩ (ACC’A’) = AC;

           (A’B’C’D’) ∩ (ACC’A’) = A’C’.

Do đó AC // A’C’.

Mà A’C’ (A’C’D) nên AC // (A’C’D).

Chứng minh tương tự ta cũng có AB’ // DC’ mà DC’ (A’C’D) nên AB’ // (A’C’D).

Ta có: AC // (A’C’D);

          AB’ // (A’C’D);

          AC, AB’ cắt nhau tại điểm A và cùng nằm trong mp(ACB’).

Do đó (ACB’) // (A’C’D).

b)

Media VietJack

• Gọi O là tâm hình bình hành đáy ABCD, I là giao điểm của BD’ và DB’.

Tứ giác BDD’B’ có BB’ // DD’ và BB’ = DD’ nên là hình bình hành.

Do đó hai đường chéo BD’ và DB’ cắt nhau tại trung điểm I của mỗi đường.

Trong mp(BDD’B’), BD’ cắt B’O tại G1.

Mà B’O (ACB’) nên G1 là giao điểm của BD’ với (ACB’).

Trong mp(BDD’B’), xét DBDB’ có hai đường trung tuyến BI, B’O cắt nhau tại G1 nên G1 là trọng tâm của DBDB’

Do đó \(\frac{{B'{G_1}}}{{BO}} = \frac{2}{3}\)

Trong (ACB’), xét DACB’ có B’O là đường trung tuyến và \(\frac{{B'{G_1}}}{{BO}} = \frac{2}{3}\)

Suy ra G1 là trọng tâm của DACB’.

• Gọi O’ là tâm hình bình hành đáy A’B’C’D’.

Chứng minh tương tự như trên ta cũng có: G2 là trọng tâm của DDD’B’ nên \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)

Trong (A’C’D), DA’C’D có DO’ là đường trung tuyến và \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)

Suy ra G2 là trọng tâm của DA’C’D.

c) Theo chứng minh câu b, ta có:

• G1 là trọng tâm của DBDB’ nên \(\frac{{B{G_1}}}{{BI}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{1}{2}\)

• G2 là trọng tâm của DDD’B’ nên \(\frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)

Do đó \(\frac{{B{G_1}}}{{BI}} = \frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)

Ta có: \(\frac{{B{G_1}}}{{BI}} = \frac{{D'{G_2}}}{{D'I}}\) và BI = D’I (do I là trung điểm của BD’)

Suy ra BG1 = D’G2.

Lại có \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\) nên IG1 = IG2 = \(\frac{1}{2}\)BG1

Do đó G1G2 = IG1 + IG2 = \(\frac{1}{2}\)BG1 + \(\frac{1}{2}\)BG1 = BG1.

Vậy BG1 = G1G2 = D’G2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B’.

a) Chứng minh rằng EF // (BCC’B’).

b) Gọi I là giao điểm của đường thẳng CF với mặt phẳng (AC’B). Chứng minh rằng I là trung điểm đoạn thẳng CF.

Xem đáp án » 16/07/2024 257

Câu 2:

Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA’, C’D’, AD’. Chứng minh rằng:

a) NQ // A’D’ và NQ = \(\frac{1}{2}\)A’D’;

b) Tứ giác MNQC là hình bình hành;

c) MN // (ACD’);

d) (MNP) // (ACD’).

Xem đáp án » 12/07/2024 178

Câu 3:

Vẽ hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình bình hành.

Xem đáp án » 07/07/2024 141

Câu 4:

Từ định nghĩa hình lăng trụ, nhận xét đặc điểm các mặt bên, cạnh bên và hai mặt đáy của hình lăng trụ.

Xem đáp án » 15/07/2024 132

Câu 5:

Cho một số ví dụ về những đồ dùng, vật thể trong thực tế có dạng hình lăng trụ.

Xem đáp án » 12/07/2024 77

Câu 6:

Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua một điểm.

Xem đáp án » 20/07/2024 77

Câu 7:

Hãy liệt kê các đường chéo của hình hộp ABCD.A’B’C’D’ (Hình 73).
Media VietJack

Xem đáp án » 30/06/2024 72

Câu 8:

Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh hình lăng trụ, hình hộp. Chẳng hạn: Khung lịch để bàn (Hình 68); Tháp đôi Puerta de Europa ở Madrid, Tây Ban Nha (Hình 69), …

Media VietJack

Hình lăng trụ và hình hộp là hình như thế nào?

Xem đáp án » 30/06/2024 68

Câu 9:

Nêu nhận xét gì về hai mặt phẳng chứa hai mặt đối diện của hình hộp.

Xem đáp án » 18/07/2024 63

Câu 10:

Cho hai mặt phẳng song song (P) và (P’). Trong mặt phẳng (P), cho đa giác A1A2….An. Qua các đỉnh A1, A2, ..., An vẽ các đường thẳng song song với nhau và cắt mặt phẳng (P’) lần lượt tại A1’, A2­’, ..., An’ (Hình 70 minh hoạ cho trường hợp n = 5).

Media VietJack

a) Các tứ giác A1A2A2’A1’, A2A3A3’A2’, …, AnA1A1’An’ là những hình gì?

b) Các cạnh tương ứng của hai đa giác A1A2…An và A1’A2’…An’ có đặc điểm gì?

Xem đáp án » 16/07/2024 60

Câu hỏi mới nhất

Xem thêm »
Xem thêm »