Câu hỏi:
21/07/2024 177Từ các chữ số 1,2,3,....,9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau.
Trả lời:
Chọn B
Lấy ra 3 chữ số từ 9 chữ số và sắp xếp 3 chữ số đó theo thứ tự, mỗi cách sắp xếp tạo nên 1 số có 3 chữ số khác nhau. Như vậy, có số cần tìm.
* Nhận xét: Mục đích bài toán là phân biệt hai khái niệm: Chỉnh hợp và tổ hợp. Học sinh có thể giải bài này bằng phương pháp nhân: 9.8.7, và so sánh với 4 đáp án. Hai chỉnh hợp khác nhau thì có thể khác nhau về phần tử hoặc khác nhau về thứ tự các phần tử. Hai tổ hợp khác nhau thì khác nhau về phần tử.
*Lý thuyết Chỉnh hợp
- Cho tập hợp A có n phần tử và cho số nguyên k, (1 k n). Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).
- Số các chỉnh hợp chập k của một tập hợp có n phần tử là:
- Một số qui ước:
*Lý thuyết Tổ hợp
- Cho tập hợp A có n phần tử và cho số nguyên k, (1 k n). Mỗi tập hợp con của A có phần tử được gọi là một tổ hợp chập k của n phần tử của A.
- Số các chỉnh hợp chập k của một tập hợp có n phần tử là :
- Một số quy ước: với qui ước này ta có đúng với số nguyên dương k, thỏa 0 k n
PT 14.1. Chọn B
TH1
TH2: vì
Như vậy, có số cần tìm
PT 14.2.
Chọn C
Mỗi tập con có 3 phần tử thuộc tập {1,2,...,9} xác định duy nhất một số có 3 chữ số tăng dần từ trái qua phải (đảm bảo chữ số đầu tiên khác 0).
Mỗi tập con có 3 phần tử thuộc tập {0,1,2....,9} xác định duy nhất một số có 3 chữ số giảm dần từ trái qua phải.
Như vậy, có số cần tìm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Có bao nhiêu cách xếp chỗ ngồi cho 4 bạn học sinh vào dãy có 4 ghế?
Câu 3:
Nhãn mỗi chiếc ghế trong một hội trường gồm hai phần : phần đầu là một chữ cái ( trong bảng 24 chữ cái tiếng Việt ), phần thứ hai là một số nguyên dương nhỏ hơn 26. Hỏi có nhiều nhất bao nhiêu chiếc ghế được ghi nhãn khác nhau ?
Câu 4:
Số cách xếp 4 học sinh vào một dãy ghế dài gồm 10 ghế, mỗi ghế chỉ một học sinh ngồi bằng
Câu 5:
Từ các số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có sáu chữ số đôi một khác nhau trong đó các chữ số 1, 2, 3 luôn có mặt và đứng cạnh nhau?
Câu 6:
Cho đa giác đều 2019 đỉnh. Khi đó số tứ giác mà mỗi đỉnh được lấy từ các đỉnh của đa giác đều đã cho và không có cạnh nào là cạnh của đa giác đều đã cho là:
Câu 7:
Có bao nhiêu cách chọn ra một tổ trưởng và một tổ phó từ một tổ có 10 người? Biết khả năng được chọn của mỗi người trong tổ là như nhau.
Câu 8:
Cho tập hợp S = {1;2;3;4;5;6}. Gọi M là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lấy từ S sao cho tổng của các chữ số hàng đơn vị , hàng chục và hàng trăm lớn hơn tổng các chữ số còn lại là 3. Tính tổng của các phần tử của tập hợp M.
Câu 10:
Một chiếc vòng đeo tay gồm 20 hạt giống nhau. Hỏi có bao nhiêu cách cắt chiếc vòng đó thành 2 phần mà số hạt ở mỗi phần đều là số lẻ?
Câu 11:
Cho hai đường thẳng và song song với nhau. Trên đường thẳng cho 5 điểm phân biệt, trên đường thẳng cho 7 điểm phân biệt. Số tam giác có đỉnh là các điểm trong 12 điểm đã cho là:
Câu 12:
Với k, n là hai số nguyên dương tùy ý k n, mệnh đề nào dưới đây đúng?
Câu 13:
Trong mặt phẳng cho tập S gồm 10 điểm trong đó không có 3 điểm nào thẳng hàng. Có bao nhiêu tam giác có 3 đỉnh đều thuộc S?
Câu 14:
Câu 15:
Một công việc để hoàng thành bắt buộc phải trải qua hai bước, bước thứ nhất có m cách thực hiện và bước thứ hai có n cách thực hiện. Số cách để hoàn thành công việc đã cho bằng