Câu hỏi:
22/07/2024 85
Trong Hình 64, hai mép của con đường gợi nên hình ảnh hai đường thẳng song song Δ và ∆’. Xét điểm A trên đường thẳng Δ.
a) Khoảng cách từ điểm A đến đường thẳng Δ’ có phụ thuộc vào vị trí của điểm A trên đường thẳng Δ hay không? Vì sao?
Trong Hình 64, hai mép của con đường gợi nên hình ảnh hai đường thẳng song song Δ và ∆’. Xét điểm A trên đường thẳng Δ.
a) Khoảng cách từ điểm A đến đường thẳng Δ’ có phụ thuộc vào vị trí của điểm A trên đường thẳng Δ hay không? Vì sao?
Trả lời:
a) Gọi B là điểm thuộc Δ sao cho điểm B khác điểm A.
Kẻ AH ⊥ ∆’, BK ⊥ Δ’, với H, K ∈ Δ’.
Suy ra AH // BK (vì cùng vuông góc với Δ’).
Ta có: AH ⊥ ∆’ và H ∈ ∆’ ⇒ d(A, Δ’) = AH. (1)
BK ⊥ ∆’ và K ∈ ∆’ ⇒ d(B, Δ’) = BK. (2)
Xét tứ giác ABKH có:
AB // HK (do Δ // Δ’);
AH // BK.
Suy ra ABKH là hình bình hành,
Do đó AH = BK. (3)
Từ (1), (2), (3) ta có: d(A, Δ’) = d(B, Δ’).
Vậy khoảng cách từ điểm A đến đường thẳng Δ’ không phụ thuộc vào vị trí của điểm A trên đường thẳng Δ.
a) Gọi B là điểm thuộc Δ sao cho điểm B khác điểm A.
Kẻ AH ⊥ ∆’, BK ⊥ Δ’, với H, K ∈ Δ’.
Suy ra AH // BK (vì cùng vuông góc với Δ’).
Ta có: AH ⊥ ∆’ và H ∈ ∆’ ⇒ d(A, Δ’) = AH. (1)
BK ⊥ ∆’ và K ∈ ∆’ ⇒ d(B, Δ’) = BK. (2)
Xét tứ giác ABKH có:
AB // HK (do Δ // Δ’);
AH // BK.
Suy ra ABKH là hình bình hành,
Do đó AH = BK. (3)
Từ (1), (2), (3) ta có: d(A, Δ’) = d(B, Δ’).
Vậy khoảng cách từ điểm A đến đường thẳng Δ’ không phụ thuộc vào vị trí của điểm A trên đường thẳng Δ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).
a) Tính khoảng cách từ điểm C đến đường thẳng AB.
Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).
a) Tính khoảng cách từ điểm C đến đường thẳng AB.
Câu 4:
Với giả thiết ở Bài tập 4, hãy:
a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD).
Với giả thiết ở Bài tập 4, hãy:
a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD).
Câu 6:
Cho hình chóp S.ABC có SA ⊥ (ABC), AI ⊥ BC (I ∈ BC), AH ⊥ SI (H ∈ SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH.
Câu 7:
Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC.
Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC.
Câu 8:
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
Câu 9:
Người ta dựng các cột đèn vuông góc với mặt đường, trong đó mỗi cột đèn gợi nên hình ảnh một đường thẳng. Khoảng cách giữa hai chân cột đèn liên tiếp đo được là 5 m. Tại sao có thể nói khoảng cách giữa hai cột đèn đó là 5 m?
Người ta dựng các cột đèn vuông góc với mặt đường, trong đó mỗi cột đèn gợi nên hình ảnh một đường thẳng. Khoảng cách giữa hai chân cột đèn liên tiếp đo được là 5 m. Tại sao có thể nói khoảng cách giữa hai cột đèn đó là 5 m?
Câu 10:
c) Chứng minh rằng (MNP) // (BCD). Tính khoảng cách giữa hai mặt phẳng (MNP) và (BCD).
c) Chứng minh rằng (MNP) // (BCD). Tính khoảng cách giữa hai mặt phẳng (MNP) và (BCD).
Câu 11:
b) Khoảng cách đó gợi nên khái niệm gì trong hình học liên quan đến hai đường thẳng song song Δ và Δ’?
b) Khoảng cách đó gợi nên khái niệm gì trong hình học liên quan đến hai đường thẳng song song Δ và Δ’?
Câu 12:
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC).
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC).
Câu 13:
Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).
Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).
Câu 14:
b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.
b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.
Câu 15:
Hình 76 gợi nên hình ảnh hai mặt phẳng (P) và (Q) song song với nhau. Cột gỗ cao 4,2 m. Khoảng cách giữa (P) và (Q) là bao nhiêu mét?
Hình 76 gợi nên hình ảnh hai mặt phẳng (P) và (Q) song song với nhau. Cột gỗ cao 4,2 m. Khoảng cách giữa (P) và (Q) là bao nhiêu mét?