Câu hỏi:
22/07/2024 129
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC).
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC).
Trả lời:
Gọi I là trung điểm của BC.
Xét ∆ABC đều có: AI là đường trung tuyến (do I là trung điểm của BC).
Suy ra AI ⊥ BC.
Do SA ⊥ (ABC) và AI ⊂ (ABC) nên SA ⊥ AI.
Ta có: AI ⊥ SA và AI ⊥ BC.
Suy ra đoạn thẳng AI là đoạn vuông góc chung của hai đường thẳng SA và BC.
Từ đó ta có d(SA, BC) = AI.
Xét ∆ABC đều cạnh a, có I là trung điểm của BC nên
Áp dụng định lí Pythagore vào tam giác ABI vuông tại I (do AI ⊥ BC) có:
AB2 = AI2 + BI2
Suy ra
Vậy
Gọi I là trung điểm của BC.
Xét ∆ABC đều có: AI là đường trung tuyến (do I là trung điểm của BC).
Suy ra AI ⊥ BC.
Do SA ⊥ (ABC) và AI ⊂ (ABC) nên SA ⊥ AI.
Ta có: AI ⊥ SA và AI ⊥ BC.
Suy ra đoạn thẳng AI là đoạn vuông góc chung của hai đường thẳng SA và BC.
Từ đó ta có d(SA, BC) = AI.
Xét ∆ABC đều cạnh a, có I là trung điểm của BC nên
Áp dụng định lí Pythagore vào tam giác ABI vuông tại I (do AI ⊥ BC) có:
AB2 = AI2 + BI2
Suy ra
Vậy
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).
a) Tính khoảng cách từ điểm C đến đường thẳng AB.
Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77).
a) Tính khoảng cách từ điểm C đến đường thẳng AB.
Câu 4:
Với giả thiết ở Bài tập 4, hãy:
a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD).
Với giả thiết ở Bài tập 4, hãy:
a) Chứng minh rằng BC // (SAD) và tính khoảng cách giữa BC và mặt phẳng (SAD).
Câu 6:
Cho hình chóp S.ABC có SA ⊥ (ABC), AI ⊥ BC (I ∈ BC), AH ⊥ SI (H ∈ SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH.
Câu 7:
Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC.
Với giả thiết ở Bài tập 2, hãy:
a) Chứng minh rằng MN // BC. Tính khoảng cách giữa hai đường thẳng MN và BC.
Câu 8:
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78).
a) Tính khoảng cách từ điểm S đến đường thẳng CD.
Câu 9:
Người ta dựng các cột đèn vuông góc với mặt đường, trong đó mỗi cột đèn gợi nên hình ảnh một đường thẳng. Khoảng cách giữa hai chân cột đèn liên tiếp đo được là 5 m. Tại sao có thể nói khoảng cách giữa hai cột đèn đó là 5 m?
Người ta dựng các cột đèn vuông góc với mặt đường, trong đó mỗi cột đèn gợi nên hình ảnh một đường thẳng. Khoảng cách giữa hai chân cột đèn liên tiếp đo được là 5 m. Tại sao có thể nói khoảng cách giữa hai cột đèn đó là 5 m?
Câu 10:
c) Chứng minh rằng (MNP) // (BCD). Tính khoảng cách giữa hai mặt phẳng (MNP) và (BCD).
c) Chứng minh rằng (MNP) // (BCD). Tính khoảng cách giữa hai mặt phẳng (MNP) và (BCD).
Câu 11:
b) Khoảng cách đó gợi nên khái niệm gì trong hình học liên quan đến hai đường thẳng song song Δ và Δ’?
b) Khoảng cách đó gợi nên khái niệm gì trong hình học liên quan đến hai đường thẳng song song Δ và Δ’?
Câu 12:
Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).
Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’).
Câu 13:
Hình 76 gợi nên hình ảnh hai mặt phẳng (P) và (Q) song song với nhau. Cột gỗ cao 4,2 m. Khoảng cách giữa (P) và (Q) là bao nhiêu mét?
Hình 76 gợi nên hình ảnh hai mặt phẳng (P) và (Q) song song với nhau. Cột gỗ cao 4,2 m. Khoảng cách giữa (P) và (Q) là bao nhiêu mét?
Câu 14:
b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.
b) Chứng minh rằng BD ⊥ (SAC) và tính khoảng cách giữa hai đường thẳng BD và SC.
Câu 15:
a) Trong Hình 70, sàn nhà và trần nhà của căn phòng gợi nên hình ảnh hai mặt phẳng song song (P), (Q). Chiều cao của căn phòng là 3 m.
Chiều cao đó gợi nên khái niệm gì trong hình học liên quan đến hai mặt phẳng song song (P), (Q)?
a) Trong Hình 70, sàn nhà và trần nhà của căn phòng gợi nên hình ảnh hai mặt phẳng song song (P), (Q). Chiều cao của căn phòng là 3 m.
Chiều cao đó gợi nên khái niệm gì trong hình học liên quan đến hai mặt phẳng song song (P), (Q)?